Limits...
Are exergames promoting mobility an attractive alternative to conventional self-regulated exercises for elderly people in a rehabilitation setting? Study protocol of a randomized controlled trial.

Hasselmann V, Oesch P, Fernandez-Luque L, Bachmann S - BMC Geriatr (2015)

Bottom Line: Maintaining mobility in elderly persons has become a primary goal within healthcare services.They are often considered tedious and boring, and thus prematurely stopped.The primary outcome is the performed daily training volume, collected by the participants in a logbook.

View Article: PubMed Central - PubMed

Affiliation: Rehabilitationsklinik Walenstadtberg, Walenstadtberg, Switzerland. viviane.hasselmann@wanadoo.fr.

ABSTRACT

Background: Maintaining mobility in elderly persons has become a primary goal within healthcare services. In older adults, exercise programs significantly reduce the risk of falling and death. Long-lasting and high-intensive multi-component exercises are most effective. In a rehabilitation setting, self-regulated exercises are conventionally taught by physiotherapists, using handouts. However, the adherence of elderly persons to executing these self-administered programs varies considerably. They are often considered tedious and boring, and thus prematurely stopped. The primary aim of this clinical trial is to determine whether elderly persons in a rehabilitation setting show higher adherence to self-regulated training when using exergames than when performing conventional exercises. The second objective is to explore which mode of exercise leads to greater improvement in balance performance.

Methods/design: The study consists of a single blind, stratified, randomized control trial with two parallel groups. Once included, study participants will be stratified according to their balance and computer skills and randomly allocated to self-regulated training with conventional exercise programs or with exergames played with the Windows Kinect® sensor and FitBit® pedometer. In both groups, self-administered exercise programs will be taught by experienced physiotherapists and performed at the patient's own discretion during the ten days of intervention. The primary outcome is the performed daily training volume, collected by the participants in a logbook. Secondary outcomes are objective and subjective balance skills measured by an activity tracker and the Fall Efficacy Scale self-administered questionnaire. Both assessments will be performed at pre- and post-intervention.

Discussion: According to the available literature, this study is the first to compare conventional self-regulated exercises with exergames among older patients in a rehabilitation setting. Results of this study will contribute to our understanding of its motivational potential on exercise adherence in elderly persons and provide more insight into the potential effectiveness of exergames promoting mobility.

Trial registration: The present clinical study has been registered on ClinicalTrials.gov under the identifier number: NCT02077049. The detailed trial protocol can be accessed online on: NCT02077049.

No MeSH data available.


Related in: MedlinePlus

Pictures of GameUp exergames. The exergames consist of 7 mini-games, including balance, mobility, and strengthening exercises. Exercise 1 called “plucking game” is a strengthening exercise for abductor muscles. The patient has to spread apart one leg on the side. Exercise 2 “apple-picking game”, exercise 4 “chicken-picking game” and exercise 7 “star-picking game” are balance exercises where the patient has to catch the falling objects and put them in the correct receptacle. These three balance exercises are based on the same training principle where the patient has to move sideways. Exercise 3 called “growing game” is a strengthening exercise for the calf muscles. The patient has to stand on his toes to water the flower. Exercise 5 called “harvesting game” is a strengthening and mobility exercise for the trunk. It trains the torso rotation. The patient has to rotate his trunk in order to cut the corn with the scythe. Exercise 6 called “pumping game” is a strengthening exercise for quadriceps muscles where the patient has to perform squats in order to pump water into a glass
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC4562105&req=5

Fig3: Pictures of GameUp exergames. The exergames consist of 7 mini-games, including balance, mobility, and strengthening exercises. Exercise 1 called “plucking game” is a strengthening exercise for abductor muscles. The patient has to spread apart one leg on the side. Exercise 2 “apple-picking game”, exercise 4 “chicken-picking game” and exercise 7 “star-picking game” are balance exercises where the patient has to catch the falling objects and put them in the correct receptacle. These three balance exercises are based on the same training principle where the patient has to move sideways. Exercise 3 called “growing game” is a strengthening exercise for the calf muscles. The patient has to stand on his toes to water the flower. Exercise 5 called “harvesting game” is a strengthening and mobility exercise for the trunk. It trains the torso rotation. The patient has to rotate his trunk in order to cut the corn with the scythe. Exercise 6 called “pumping game” is a strengthening exercise for quadriceps muscles where the patient has to perform squats in order to pump water into a glass

Mentions: The exergames used in this trial were developed by the GameUp project, which is part of the Ambient Assisted Living Joint Programme Call 4 aiming for Information and Communication Technologies (ICT) based solutions for the advancement of older persons’ mobility [36]. Following WHO recommendations on physical activities and the usability requirements of older persons, the GameUp project created seven mini exergames training mobility, strength, and balance on Kinect® for Windows. However these exergames are currently not yet available to the public. Pictures of GameUp games are shown in Fig. 3. A One™ commercially available mobility tracker from the company Fitbit® will also be used for promoting endurance.Fig. 3


Are exergames promoting mobility an attractive alternative to conventional self-regulated exercises for elderly people in a rehabilitation setting? Study protocol of a randomized controlled trial.

Hasselmann V, Oesch P, Fernandez-Luque L, Bachmann S - BMC Geriatr (2015)

Pictures of GameUp exergames. The exergames consist of 7 mini-games, including balance, mobility, and strengthening exercises. Exercise 1 called “plucking game” is a strengthening exercise for abductor muscles. The patient has to spread apart one leg on the side. Exercise 2 “apple-picking game”, exercise 4 “chicken-picking game” and exercise 7 “star-picking game” are balance exercises where the patient has to catch the falling objects and put them in the correct receptacle. These three balance exercises are based on the same training principle where the patient has to move sideways. Exercise 3 called “growing game” is a strengthening exercise for the calf muscles. The patient has to stand on his toes to water the flower. Exercise 5 called “harvesting game” is a strengthening and mobility exercise for the trunk. It trains the torso rotation. The patient has to rotate his trunk in order to cut the corn with the scythe. Exercise 6 called “pumping game” is a strengthening exercise for quadriceps muscles where the patient has to perform squats in order to pump water into a glass
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC4562105&req=5

Fig3: Pictures of GameUp exergames. The exergames consist of 7 mini-games, including balance, mobility, and strengthening exercises. Exercise 1 called “plucking game” is a strengthening exercise for abductor muscles. The patient has to spread apart one leg on the side. Exercise 2 “apple-picking game”, exercise 4 “chicken-picking game” and exercise 7 “star-picking game” are balance exercises where the patient has to catch the falling objects and put them in the correct receptacle. These three balance exercises are based on the same training principle where the patient has to move sideways. Exercise 3 called “growing game” is a strengthening exercise for the calf muscles. The patient has to stand on his toes to water the flower. Exercise 5 called “harvesting game” is a strengthening and mobility exercise for the trunk. It trains the torso rotation. The patient has to rotate his trunk in order to cut the corn with the scythe. Exercise 6 called “pumping game” is a strengthening exercise for quadriceps muscles where the patient has to perform squats in order to pump water into a glass
Mentions: The exergames used in this trial were developed by the GameUp project, which is part of the Ambient Assisted Living Joint Programme Call 4 aiming for Information and Communication Technologies (ICT) based solutions for the advancement of older persons’ mobility [36]. Following WHO recommendations on physical activities and the usability requirements of older persons, the GameUp project created seven mini exergames training mobility, strength, and balance on Kinect® for Windows. However these exergames are currently not yet available to the public. Pictures of GameUp games are shown in Fig. 3. A One™ commercially available mobility tracker from the company Fitbit® will also be used for promoting endurance.Fig. 3

Bottom Line: Maintaining mobility in elderly persons has become a primary goal within healthcare services.They are often considered tedious and boring, and thus prematurely stopped.The primary outcome is the performed daily training volume, collected by the participants in a logbook.

View Article: PubMed Central - PubMed

Affiliation: Rehabilitationsklinik Walenstadtberg, Walenstadtberg, Switzerland. viviane.hasselmann@wanadoo.fr.

ABSTRACT

Background: Maintaining mobility in elderly persons has become a primary goal within healthcare services. In older adults, exercise programs significantly reduce the risk of falling and death. Long-lasting and high-intensive multi-component exercises are most effective. In a rehabilitation setting, self-regulated exercises are conventionally taught by physiotherapists, using handouts. However, the adherence of elderly persons to executing these self-administered programs varies considerably. They are often considered tedious and boring, and thus prematurely stopped. The primary aim of this clinical trial is to determine whether elderly persons in a rehabilitation setting show higher adherence to self-regulated training when using exergames than when performing conventional exercises. The second objective is to explore which mode of exercise leads to greater improvement in balance performance.

Methods/design: The study consists of a single blind, stratified, randomized control trial with two parallel groups. Once included, study participants will be stratified according to their balance and computer skills and randomly allocated to self-regulated training with conventional exercise programs or with exergames played with the Windows Kinect® sensor and FitBit® pedometer. In both groups, self-administered exercise programs will be taught by experienced physiotherapists and performed at the patient's own discretion during the ten days of intervention. The primary outcome is the performed daily training volume, collected by the participants in a logbook. Secondary outcomes are objective and subjective balance skills measured by an activity tracker and the Fall Efficacy Scale self-administered questionnaire. Both assessments will be performed at pre- and post-intervention.

Discussion: According to the available literature, this study is the first to compare conventional self-regulated exercises with exergames among older patients in a rehabilitation setting. Results of this study will contribute to our understanding of its motivational potential on exercise adherence in elderly persons and provide more insight into the potential effectiveness of exergames promoting mobility.

Trial registration: The present clinical study has been registered on ClinicalTrials.gov under the identifier number: NCT02077049. The detailed trial protocol can be accessed online on: NCT02077049.

No MeSH data available.


Related in: MedlinePlus