Limits...
Primo-Vascular System as Presented by Bong Han Kim.

Vodyanoy V, Pustovyy O, Globa L, Sorokulova I - Evid Based Complement Alternat Med (2015)

Bottom Line: However, he did not disclose in detail his methods.Consequently, his results are relatively obscure from the vantage point of contemporary scientists.Traditionally, it was not normally necessary to describe the method used unless it is significantly deviated from the original method.

View Article: PubMed Central - PubMed

Affiliation: Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn, AL 36849, USA ; School of Kinesiology, Auburn University, Auburn, AL 36849, USA ; Edward Via College of Osteopathic Medicine, Auburn, AL 36849, USA.

ABSTRACT
In the 1960s Bong Han Kim discovered and characterized a new vascular system. He was able to differentiate it clearly from vascular blood and lymph systems by the use of a variety of methods, which were available to him in the mid-20th century. He gave detailed characterization of the system and created comprehensive diagrams and photographs in his publications. He demonstrated that this system is composed of nodes and vessels, and it was responsible for tissue regeneration. However, he did not disclose in detail his methods. Consequently, his results are relatively obscure from the vantage point of contemporary scientists. The stains that Kim used had been perfected and had been in use for more than 100 years. Therefore, the names of the stains were directed to the explicit protocols for the usage with the particular cells or molecules. Traditionally, it was not normally necessary to describe the method used unless it is significantly deviated from the original method. In this present work, we have been able to disclose staining methods used by Kim.

No MeSH data available.


Related in: MedlinePlus

Fibers. (a) Superficial primo-node (resorcin-fuchsin stain) (×400). 1: sinus, arrow: elastic fiber, arrowhead: elastic membrane in blood vessel, and star: erythrocytes. (b) Superficial primo-node (Verhoeff stain) (×400). 1: sinus, white arrow: basophil particle, star: erythrocytes, blood vessel membrane: black arrow, and collagen fiber between sinus folds: arrowhead. (c) Neural Bonghan duct (in the central canal of the spinal cord) (Van Gieson stain) (×400). 1: primo-vessel, 2: central canal of the spinal cord. (d) Nerve-supply at the superficial primo-node (Gros-Schultze reaction) (×160). 1: superficial primo-node, 2: nerve fiber [7].
© Copyright Policy - open-access
Related In: Results  -  Collection


getmorefigures.php?uid=PMC4562093&req=5

fig4: Fibers. (a) Superficial primo-node (resorcin-fuchsin stain) (×400). 1: sinus, arrow: elastic fiber, arrowhead: elastic membrane in blood vessel, and star: erythrocytes. (b) Superficial primo-node (Verhoeff stain) (×400). 1: sinus, white arrow: basophil particle, star: erythrocytes, blood vessel membrane: black arrow, and collagen fiber between sinus folds: arrowhead. (c) Neural Bonghan duct (in the central canal of the spinal cord) (Van Gieson stain) (×400). 1: primo-vessel, 2: central canal of the spinal cord. (d) Nerve-supply at the superficial primo-node (Gros-Schultze reaction) (×160). 1: superficial primo-node, 2: nerve fiber [7].

Mentions: Large amount of fibrous connective tissue was found between sinuses in primo-nodes. The primo-nodes are partly filled with collagen fibers that are produced by reticular cells. Reticular fibers intersect to create a thin net that serves as a supporting mesh in the primo-nodes and vessels. Kim found that this connective tissue contains collagenous, elastic, and argyrophilic fibers. To characterize these materials histologically, Kim used resorcin-fuchsin, Van Gieson, Verhoeff, and Gros-Schultze stains (Table 1) [7]. A large number of fibers were found on the external envelope of the sinus, which were stained by the resorcin-fuchsin (Figure 4(a)). The jacket is folded in a distinctive way and appears light purple in color. The elastic fibers that are perpendicular to the slide and along the outer surface of the sinus together with the outer membrane of blood vessels appear dark purple. Erythrocytes counterstained with eosin appear yellow-red. The details of the sinus in primo-vessels are more pronounced with Verhoeff stain (Figure 4(b)). The elastic fibers of the sinus appear transparent black. The sinus is folded, and the collagen fibers between the folds are stained red. Basophil particles cover the sinus surface. The blood vessels filled with erythrocytes surround the sinus, and a dark purple color distinguishes the outer membranes of blood vessels.


Primo-Vascular System as Presented by Bong Han Kim.

Vodyanoy V, Pustovyy O, Globa L, Sorokulova I - Evid Based Complement Alternat Med (2015)

Fibers. (a) Superficial primo-node (resorcin-fuchsin stain) (×400). 1: sinus, arrow: elastic fiber, arrowhead: elastic membrane in blood vessel, and star: erythrocytes. (b) Superficial primo-node (Verhoeff stain) (×400). 1: sinus, white arrow: basophil particle, star: erythrocytes, blood vessel membrane: black arrow, and collagen fiber between sinus folds: arrowhead. (c) Neural Bonghan duct (in the central canal of the spinal cord) (Van Gieson stain) (×400). 1: primo-vessel, 2: central canal of the spinal cord. (d) Nerve-supply at the superficial primo-node (Gros-Schultze reaction) (×160). 1: superficial primo-node, 2: nerve fiber [7].
© Copyright Policy - open-access
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC4562093&req=5

fig4: Fibers. (a) Superficial primo-node (resorcin-fuchsin stain) (×400). 1: sinus, arrow: elastic fiber, arrowhead: elastic membrane in blood vessel, and star: erythrocytes. (b) Superficial primo-node (Verhoeff stain) (×400). 1: sinus, white arrow: basophil particle, star: erythrocytes, blood vessel membrane: black arrow, and collagen fiber between sinus folds: arrowhead. (c) Neural Bonghan duct (in the central canal of the spinal cord) (Van Gieson stain) (×400). 1: primo-vessel, 2: central canal of the spinal cord. (d) Nerve-supply at the superficial primo-node (Gros-Schultze reaction) (×160). 1: superficial primo-node, 2: nerve fiber [7].
Mentions: Large amount of fibrous connective tissue was found between sinuses in primo-nodes. The primo-nodes are partly filled with collagen fibers that are produced by reticular cells. Reticular fibers intersect to create a thin net that serves as a supporting mesh in the primo-nodes and vessels. Kim found that this connective tissue contains collagenous, elastic, and argyrophilic fibers. To characterize these materials histologically, Kim used resorcin-fuchsin, Van Gieson, Verhoeff, and Gros-Schultze stains (Table 1) [7]. A large number of fibers were found on the external envelope of the sinus, which were stained by the resorcin-fuchsin (Figure 4(a)). The jacket is folded in a distinctive way and appears light purple in color. The elastic fibers that are perpendicular to the slide and along the outer surface of the sinus together with the outer membrane of blood vessels appear dark purple. Erythrocytes counterstained with eosin appear yellow-red. The details of the sinus in primo-vessels are more pronounced with Verhoeff stain (Figure 4(b)). The elastic fibers of the sinus appear transparent black. The sinus is folded, and the collagen fibers between the folds are stained red. Basophil particles cover the sinus surface. The blood vessels filled with erythrocytes surround the sinus, and a dark purple color distinguishes the outer membranes of blood vessels.

Bottom Line: However, he did not disclose in detail his methods.Consequently, his results are relatively obscure from the vantage point of contemporary scientists.Traditionally, it was not normally necessary to describe the method used unless it is significantly deviated from the original method.

View Article: PubMed Central - PubMed

Affiliation: Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn, AL 36849, USA ; School of Kinesiology, Auburn University, Auburn, AL 36849, USA ; Edward Via College of Osteopathic Medicine, Auburn, AL 36849, USA.

ABSTRACT
In the 1960s Bong Han Kim discovered and characterized a new vascular system. He was able to differentiate it clearly from vascular blood and lymph systems by the use of a variety of methods, which were available to him in the mid-20th century. He gave detailed characterization of the system and created comprehensive diagrams and photographs in his publications. He demonstrated that this system is composed of nodes and vessels, and it was responsible for tissue regeneration. However, he did not disclose in detail his methods. Consequently, his results are relatively obscure from the vantage point of contemporary scientists. The stains that Kim used had been perfected and had been in use for more than 100 years. Therefore, the names of the stains were directed to the explicit protocols for the usage with the particular cells or molecules. Traditionally, it was not normally necessary to describe the method used unless it is significantly deviated from the original method. In this present work, we have been able to disclose staining methods used by Kim.

No MeSH data available.


Related in: MedlinePlus