Limits...
Sequential Self-Folding Structures by 3D Printed Digital Shape Memory Polymers.

Mao Y, Yu K, Isakov MS, Wu J, Dunn ML, Jerry Qi H - Sci Rep (2015)

Bottom Line: A simplified reduced-order model is also developed to rapidly and accurately describe the self-folding physics.An important aspect of self-folding is the management of self-collisions, where different portions of the folding structure contact and then block further folding.A metric is developed to predict collisions and is used together with the reduced-order model to design self-folding structures that lock themselves into stable desired configurations.

View Article: PubMed Central - PubMed

Affiliation: The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.

ABSTRACT
Folding is ubiquitous in nature with examples ranging from the formation of cellular components to winged insects. It finds technological applications including packaging of solar cells and space structures, deployable biomedical devices, and self-assembling robots and airbags. Here we demonstrate sequential self-folding structures realized by thermal activation of spatially-variable patterns that are 3D printed with digital shape memory polymers, which are digital materials with different shape memory behaviors. The time-dependent behavior of each polymer allows the temporal sequencing of activation when the structure is subjected to a uniform temperature. This is demonstrated via a series of 3D printed structures that respond rapidly to a thermal stimulus, and self-fold to specified shapes in controlled shape changing sequences. Measurements of the spatial and temporal nature of self-folding structures are in good agreement with the companion finite element simulations. A simplified reduced-order model is also developed to rapidly and accurately describe the self-folding physics. An important aspect of self-folding is the management of self-collisions, where different portions of the folding structure contact and then block further folding. A metric is developed to predict collisions and is used together with the reduced-order model to design self-folding structures that lock themselves into stable desired configurations.

No MeSH data available.


Schematic of two arbitrary strips having a factitious intersection point.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4562068&req=5

f7: Schematic of two arbitrary strips having a factitious intersection point.

Mentions: We use the scaling rule to predict the shape recovery ratio of hinge by the recovery behavior of a sample under linear stretch. Here, we assume that the folding structure can be represented by rigid panels connected by hinges, which occupy infinitesimal space but control the angles between two panels. Figure 7 shows panels are connected by hinges, which are represented by Pi with its coordinates of (xi, yi) for the i-th hinge.


Sequential Self-Folding Structures by 3D Printed Digital Shape Memory Polymers.

Mao Y, Yu K, Isakov MS, Wu J, Dunn ML, Jerry Qi H - Sci Rep (2015)

Schematic of two arbitrary strips having a factitious intersection point.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4562068&req=5

f7: Schematic of two arbitrary strips having a factitious intersection point.
Mentions: We use the scaling rule to predict the shape recovery ratio of hinge by the recovery behavior of a sample under linear stretch. Here, we assume that the folding structure can be represented by rigid panels connected by hinges, which occupy infinitesimal space but control the angles between two panels. Figure 7 shows panels are connected by hinges, which are represented by Pi with its coordinates of (xi, yi) for the i-th hinge.

Bottom Line: A simplified reduced-order model is also developed to rapidly and accurately describe the self-folding physics.An important aspect of self-folding is the management of self-collisions, where different portions of the folding structure contact and then block further folding.A metric is developed to predict collisions and is used together with the reduced-order model to design self-folding structures that lock themselves into stable desired configurations.

View Article: PubMed Central - PubMed

Affiliation: The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.

ABSTRACT
Folding is ubiquitous in nature with examples ranging from the formation of cellular components to winged insects. It finds technological applications including packaging of solar cells and space structures, deployable biomedical devices, and self-assembling robots and airbags. Here we demonstrate sequential self-folding structures realized by thermal activation of spatially-variable patterns that are 3D printed with digital shape memory polymers, which are digital materials with different shape memory behaviors. The time-dependent behavior of each polymer allows the temporal sequencing of activation when the structure is subjected to a uniform temperature. This is demonstrated via a series of 3D printed structures that respond rapidly to a thermal stimulus, and self-fold to specified shapes in controlled shape changing sequences. Measurements of the spatial and temporal nature of self-folding structures are in good agreement with the companion finite element simulations. A simplified reduced-order model is also developed to rapidly and accurately describe the self-folding physics. An important aspect of self-folding is the management of self-collisions, where different portions of the folding structure contact and then block further folding. A metric is developed to predict collisions and is used together with the reduced-order model to design self-folding structures that lock themselves into stable desired configurations.

No MeSH data available.