Limits...
Aluminum doping tunes band gap energy level as well as oxidative stress-mediated cytotoxicity of ZnO nanoparticles in MCF-7 cells.

Akhtar MJ, Alhadlaq HA, Alshamsan A, Majeed Khan MA, Ahamed M - Sci Rep (2015)

Bottom Line: Characterization study confirmed the formation of single phase of Al(x)Zn(1-x)O nanocrystals with the size range of 33-55 nm.The IC50 for undoped ZnO nanoparticles was 44 μg/ml while for the Al-doped ZnO counterparts was 31 μg/ml.Up-regulation of apoptotic genes (e.g. p53, bax/bcl2 ratio, caspase-3 &caspase-9) along with loss of mitochondrial membrane potential suggested that Al-doped ZnO nanoparticles induced apoptosis in MCF-7 cells through mitochondrial pathway.

View Article: PubMed Central - PubMed

Affiliation: King Abdullah Institute for Nanotechnology, King Saud University, Riyadh 11451, Saudi Arabia.

ABSTRACT
We investigated whether Aluminum (Al) doping tunes band gap energy level as well as selective cytotoxicity of ZnO nanoparticles in human breast cancer cells (MCF-7). Pure and Al-doped ZnO nanoparticles were prepared by a simple sol-gel method. Characterization study confirmed the formation of single phase of Al(x)Zn(1-x)O nanocrystals with the size range of 33-55 nm. Al-doping increased the band gap energy of ZnO nanoparticles (from 3.51 eV for pure to 3.87 eV for Al-doped ZnO). Al-doping also enhanced the cytotoxicity and oxidative stress response of ZnO nanoparticles in MCF-7 cells. The IC50 for undoped ZnO nanoparticles was 44 μg/ml while for the Al-doped ZnO counterparts was 31 μg/ml. Up-regulation of apoptotic genes (e.g. p53, bax/bcl2 ratio, caspase-3 &caspase-9) along with loss of mitochondrial membrane potential suggested that Al-doped ZnO nanoparticles induced apoptosis in MCF-7 cells through mitochondrial pathway. Importantly, Al-doping did not change the benign nature of ZnO nanoparticles towards normal cells suggesting that Al-doping improves the selective cytotoxicity of ZnO nanoparticles toward MCF-7 cells without affecting the normal cells. Our results indicated a novel approach through which the inherent selective cytotoxicity of ZnO nanoparticles against cancer cells can be further improved.

No MeSH data available.


Related in: MedlinePlus

(A) XRD pattern of pure and Al-doped ZnO nanoparticles. (B) XRD pattern (zoom) corresponding to peak (101) of pure and Al-doped ZnO nanoparticles.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4561961&req=5

f1: (A) XRD pattern of pure and Al-doped ZnO nanoparticles. (B) XRD pattern (zoom) corresponding to peak (101) of pure and Al-doped ZnO nanoparticles.

Mentions: Figure 1A represents the XRD pattern of the pure and Al-doped ZnO nanoparticles. XRD pattern shows that Al-doping did not change the hexagonal wurtzite structure (JCPDS89-0510) of ZnO nanoparticles and suggested the formation of single phase of AlxZn1-xO. Broadening of diffraction peaks due to Al-doping was observed that indicated the decrease in nanoparticles size. As we can see in Fig. 1B, ZnO nanoparticles peak corresponding to (101) plane shifted slightly to lower angle due Al-doping. Shifting of peak could be due to incorporation of dopant ions into the lattice of the host material. Similar finding were reported by other investigators1122. The crystallite size (D) of pure and Al-doped ZnO nanoparticles was calculated using Scherrer’s formula (equation 1)11.


Aluminum doping tunes band gap energy level as well as oxidative stress-mediated cytotoxicity of ZnO nanoparticles in MCF-7 cells.

Akhtar MJ, Alhadlaq HA, Alshamsan A, Majeed Khan MA, Ahamed M - Sci Rep (2015)

(A) XRD pattern of pure and Al-doped ZnO nanoparticles. (B) XRD pattern (zoom) corresponding to peak (101) of pure and Al-doped ZnO nanoparticles.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4561961&req=5

f1: (A) XRD pattern of pure and Al-doped ZnO nanoparticles. (B) XRD pattern (zoom) corresponding to peak (101) of pure and Al-doped ZnO nanoparticles.
Mentions: Figure 1A represents the XRD pattern of the pure and Al-doped ZnO nanoparticles. XRD pattern shows that Al-doping did not change the hexagonal wurtzite structure (JCPDS89-0510) of ZnO nanoparticles and suggested the formation of single phase of AlxZn1-xO. Broadening of diffraction peaks due to Al-doping was observed that indicated the decrease in nanoparticles size. As we can see in Fig. 1B, ZnO nanoparticles peak corresponding to (101) plane shifted slightly to lower angle due Al-doping. Shifting of peak could be due to incorporation of dopant ions into the lattice of the host material. Similar finding were reported by other investigators1122. The crystallite size (D) of pure and Al-doped ZnO nanoparticles was calculated using Scherrer’s formula (equation 1)11.

Bottom Line: Characterization study confirmed the formation of single phase of Al(x)Zn(1-x)O nanocrystals with the size range of 33-55 nm.The IC50 for undoped ZnO nanoparticles was 44 μg/ml while for the Al-doped ZnO counterparts was 31 μg/ml.Up-regulation of apoptotic genes (e.g. p53, bax/bcl2 ratio, caspase-3 &caspase-9) along with loss of mitochondrial membrane potential suggested that Al-doped ZnO nanoparticles induced apoptosis in MCF-7 cells through mitochondrial pathway.

View Article: PubMed Central - PubMed

Affiliation: King Abdullah Institute for Nanotechnology, King Saud University, Riyadh 11451, Saudi Arabia.

ABSTRACT
We investigated whether Aluminum (Al) doping tunes band gap energy level as well as selective cytotoxicity of ZnO nanoparticles in human breast cancer cells (MCF-7). Pure and Al-doped ZnO nanoparticles were prepared by a simple sol-gel method. Characterization study confirmed the formation of single phase of Al(x)Zn(1-x)O nanocrystals with the size range of 33-55 nm. Al-doping increased the band gap energy of ZnO nanoparticles (from 3.51 eV for pure to 3.87 eV for Al-doped ZnO). Al-doping also enhanced the cytotoxicity and oxidative stress response of ZnO nanoparticles in MCF-7 cells. The IC50 for undoped ZnO nanoparticles was 44 μg/ml while for the Al-doped ZnO counterparts was 31 μg/ml. Up-regulation of apoptotic genes (e.g. p53, bax/bcl2 ratio, caspase-3 &caspase-9) along with loss of mitochondrial membrane potential suggested that Al-doped ZnO nanoparticles induced apoptosis in MCF-7 cells through mitochondrial pathway. Importantly, Al-doping did not change the benign nature of ZnO nanoparticles towards normal cells suggesting that Al-doping improves the selective cytotoxicity of ZnO nanoparticles toward MCF-7 cells without affecting the normal cells. Our results indicated a novel approach through which the inherent selective cytotoxicity of ZnO nanoparticles against cancer cells can be further improved.

No MeSH data available.


Related in: MedlinePlus