Limits...
Deterministic Creation of Macroscopic Cat States.

Lombardo D, Twamley J - Sci Rep (2015)

Bottom Line: Despite current technological advances, observing quantum mechanical effects outside of the nanoscopic realm is extremely challenging.In this work we develop a completely deterministic method of macroscopic quantum state creation.It is found that by using a Bose-Einstein condensate as a membrane high fidelity cat states with spatial separations of up to ∼300 nm can be achieved.

View Article: PubMed Central - PubMed

Affiliation: Centre for Engineered Quantum Systems, Department of Physics and Astronomy, Macquarie University, Sydney, NSW 2109, Australia.

ABSTRACT
Despite current technological advances, observing quantum mechanical effects outside of the nanoscopic realm is extremely challenging. For this reason, the observation of such effects on larger scale systems is currently one of the most attractive goals in quantum science. Many experimental protocols have been proposed for both the creation and observation of quantum states on macroscopic scales, in particular, in the field of optomechanics. The majority of these proposals, however, rely on performing measurements, making them probabilistic. In this work we develop a completely deterministic method of macroscopic quantum state creation. We study the prototypical optomechanical Membrane In The Middle model and show that by controlling the membrane's opacity, and through careful choice of the optical cavity initial state, we can deterministically create and grow the spatial extent of the membrane's position into a large cat state. It is found that by using a Bose-Einstein condensate as a membrane high fidelity cat states with spatial separations of up to ∼300 nm can be achieved.

No MeSH data available.


Related in: MedlinePlus

Density plots of the Wigner function for different cavity damping rates, κc.These simulations were performed using the parameters for a BEC shown above with N = 2 photons in the system and NFlips = 3. The negativity of the Wigner function shows that the final state is still a non-classical state36.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4561959&req=5

f9: Density plots of the Wigner function for different cavity damping rates, κc.These simulations were performed using the parameters for a BEC shown above with N = 2 photons in the system and NFlips = 3. The negativity of the Wigner function shows that the final state is still a non-classical state36.

Mentions: where describes the state in which all M atoms are in the optical ground state. The resulting Wigner function of the membrane’s state after application of is presented in Fig. 9 for several cavity damping rates. These results show that the final state strongly resembles that of a typical cat state with decoherent effects similar to those observed by Haroche12. They also show that, if the ratio between the trap frequency of the BEC and the cavity loss rate can be increased by a factor of ~10, spatial separations of up to 300 nm can be achieved between the two center of mass positions of the 105 atom BEC. This is more than double the displacement achieved in the entangled state analogue where only a single ion was used11. To determine the degree of resemblance between the final state, , and a typical cat state , the fidelity can be calculated,


Deterministic Creation of Macroscopic Cat States.

Lombardo D, Twamley J - Sci Rep (2015)

Density plots of the Wigner function for different cavity damping rates, κc.These simulations were performed using the parameters for a BEC shown above with N = 2 photons in the system and NFlips = 3. The negativity of the Wigner function shows that the final state is still a non-classical state36.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4561959&req=5

f9: Density plots of the Wigner function for different cavity damping rates, κc.These simulations were performed using the parameters for a BEC shown above with N = 2 photons in the system and NFlips = 3. The negativity of the Wigner function shows that the final state is still a non-classical state36.
Mentions: where describes the state in which all M atoms are in the optical ground state. The resulting Wigner function of the membrane’s state after application of is presented in Fig. 9 for several cavity damping rates. These results show that the final state strongly resembles that of a typical cat state with decoherent effects similar to those observed by Haroche12. They also show that, if the ratio between the trap frequency of the BEC and the cavity loss rate can be increased by a factor of ~10, spatial separations of up to 300 nm can be achieved between the two center of mass positions of the 105 atom BEC. This is more than double the displacement achieved in the entangled state analogue where only a single ion was used11. To determine the degree of resemblance between the final state, , and a typical cat state , the fidelity can be calculated,

Bottom Line: Despite current technological advances, observing quantum mechanical effects outside of the nanoscopic realm is extremely challenging.In this work we develop a completely deterministic method of macroscopic quantum state creation.It is found that by using a Bose-Einstein condensate as a membrane high fidelity cat states with spatial separations of up to ∼300 nm can be achieved.

View Article: PubMed Central - PubMed

Affiliation: Centre for Engineered Quantum Systems, Department of Physics and Astronomy, Macquarie University, Sydney, NSW 2109, Australia.

ABSTRACT
Despite current technological advances, observing quantum mechanical effects outside of the nanoscopic realm is extremely challenging. For this reason, the observation of such effects on larger scale systems is currently one of the most attractive goals in quantum science. Many experimental protocols have been proposed for both the creation and observation of quantum states on macroscopic scales, in particular, in the field of optomechanics. The majority of these proposals, however, rely on performing measurements, making them probabilistic. In this work we develop a completely deterministic method of macroscopic quantum state creation. We study the prototypical optomechanical Membrane In The Middle model and show that by controlling the membrane's opacity, and through careful choice of the optical cavity initial state, we can deterministically create and grow the spatial extent of the membrane's position into a large cat state. It is found that by using a Bose-Einstein condensate as a membrane high fidelity cat states with spatial separations of up to ∼300 nm can be achieved.

No MeSH data available.


Related in: MedlinePlus