Limits...
Deterministic Creation of Macroscopic Cat States.

Lombardo D, Twamley J - Sci Rep (2015)

Bottom Line: Despite current technological advances, observing quantum mechanical effects outside of the nanoscopic realm is extremely challenging.In this work we develop a completely deterministic method of macroscopic quantum state creation.It is found that by using a Bose-Einstein condensate as a membrane high fidelity cat states with spatial separations of up to ∼300 nm can be achieved.

View Article: PubMed Central - PubMed

Affiliation: Centre for Engineered Quantum Systems, Department of Physics and Astronomy, Macquarie University, Sydney, NSW 2109, Australia.

ABSTRACT
Despite current technological advances, observing quantum mechanical effects outside of the nanoscopic realm is extremely challenging. For this reason, the observation of such effects on larger scale systems is currently one of the most attractive goals in quantum science. Many experimental protocols have been proposed for both the creation and observation of quantum states on macroscopic scales, in particular, in the field of optomechanics. The majority of these proposals, however, rely on performing measurements, making them probabilistic. In this work we develop a completely deterministic method of macroscopic quantum state creation. We study the prototypical optomechanical Membrane In The Middle model and show that by controlling the membrane's opacity, and through careful choice of the optical cavity initial state, we can deterministically create and grow the spatial extent of the membrane's position into a large cat state. It is found that by using a Bose-Einstein condensate as a membrane high fidelity cat states with spatial separations of up to ∼300 nm can be achieved.

No MeSH data available.


Related in: MedlinePlus

Depiction of the Raman transition which can be applied to the 3-level atomic system to excited the magnetic levels of the optical ground state, , rather than those of the optically excited state,. The interaction strength for each transition is denoted by the respective g.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4561959&req=5

f6: Depiction of the Raman transition which can be applied to the 3-level atomic system to excited the magnetic levels of the optical ground state, , rather than those of the optically excited state,. The interaction strength for each transition is denoted by the respective g.

Mentions: As optical transitions are considered in the schematic experiment, application of a π pulse to the ensemble of 3-level atoms to disentangle the system is quite difficult experimentally. This difficulty stems from the short lifetimes of the optically excited states, in turn, making the disentanglement process experimentally challenging. However, the optically excited states of the 3-level atoms can be bypassed through the use of a Raman transition. To do so, we must consider atoms with triplet optical ground and excited states. Such atoms can be directly excited into the ms = ±1 levels of the optical ground state by detuning the left/right optical cavity modes from the atomic transition and introducing a similarly detuned coherent field, depicted in Fig. 6. This is beneficial as these levels of the optical ground state are significantly longer lived, allowing for a more practical implementation of the π pulse to the atomic ensemble. Bypassing the optically excited state requires that both the left/right optical cavity modes and the classical field are off resonance with the atomic transition such that the detuning, ΔD, satisfies , where g± denotes the coupling strength to the ms = ±1 transitions, shown in Fig. 6. An effective Hamiltonian for this process can be derived by time-averaging the dynamics of the system. For an interaction picture Hamiltonian of the form,


Deterministic Creation of Macroscopic Cat States.

Lombardo D, Twamley J - Sci Rep (2015)

Depiction of the Raman transition which can be applied to the 3-level atomic system to excited the magnetic levels of the optical ground state, , rather than those of the optically excited state,. The interaction strength for each transition is denoted by the respective g.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4561959&req=5

f6: Depiction of the Raman transition which can be applied to the 3-level atomic system to excited the magnetic levels of the optical ground state, , rather than those of the optically excited state,. The interaction strength for each transition is denoted by the respective g.
Mentions: As optical transitions are considered in the schematic experiment, application of a π pulse to the ensemble of 3-level atoms to disentangle the system is quite difficult experimentally. This difficulty stems from the short lifetimes of the optically excited states, in turn, making the disentanglement process experimentally challenging. However, the optically excited states of the 3-level atoms can be bypassed through the use of a Raman transition. To do so, we must consider atoms with triplet optical ground and excited states. Such atoms can be directly excited into the ms = ±1 levels of the optical ground state by detuning the left/right optical cavity modes from the atomic transition and introducing a similarly detuned coherent field, depicted in Fig. 6. This is beneficial as these levels of the optical ground state are significantly longer lived, allowing for a more practical implementation of the π pulse to the atomic ensemble. Bypassing the optically excited state requires that both the left/right optical cavity modes and the classical field are off resonance with the atomic transition such that the detuning, ΔD, satisfies , where g± denotes the coupling strength to the ms = ±1 transitions, shown in Fig. 6. An effective Hamiltonian for this process can be derived by time-averaging the dynamics of the system. For an interaction picture Hamiltonian of the form,

Bottom Line: Despite current technological advances, observing quantum mechanical effects outside of the nanoscopic realm is extremely challenging.In this work we develop a completely deterministic method of macroscopic quantum state creation.It is found that by using a Bose-Einstein condensate as a membrane high fidelity cat states with spatial separations of up to ∼300 nm can be achieved.

View Article: PubMed Central - PubMed

Affiliation: Centre for Engineered Quantum Systems, Department of Physics and Astronomy, Macquarie University, Sydney, NSW 2109, Australia.

ABSTRACT
Despite current technological advances, observing quantum mechanical effects outside of the nanoscopic realm is extremely challenging. For this reason, the observation of such effects on larger scale systems is currently one of the most attractive goals in quantum science. Many experimental protocols have been proposed for both the creation and observation of quantum states on macroscopic scales, in particular, in the field of optomechanics. The majority of these proposals, however, rely on performing measurements, making them probabilistic. In this work we develop a completely deterministic method of macroscopic quantum state creation. We study the prototypical optomechanical Membrane In The Middle model and show that by controlling the membrane's opacity, and through careful choice of the optical cavity initial state, we can deterministically create and grow the spatial extent of the membrane's position into a large cat state. It is found that by using a Bose-Einstein condensate as a membrane high fidelity cat states with spatial separations of up to ∼300 nm can be achieved.

No MeSH data available.


Related in: MedlinePlus