Limits...
Functionalized Buckyballs for Visualizing Microbial Species in Different States and Environments.

Cheng Q, Aravind A, Buckley M, Gifford A, Parvin B - Sci Rep (2015)

Bottom Line: To date, in situ visualization of microbial density has remained an open problem.Here, functionalized buckyballs (e.g., C60-pyrrolidine tris acid) are shown to be a versatile platform that allows internalization within a microorganism without either adhering to the cell wall and cell membrane or binding to a matrix substrate such as soil.We also demonstrate that cysteine-functionalized C60-pyrrolidine tris acid can differentiate live and dead microorganisms.

View Article: PubMed Central - PubMed

Affiliation: Department of Electrical and Biomedical Engineering, University of Nevada, Reno, 1664 N Virginia Street, Reno NV, 89503, USA.

ABSTRACT
To date, in situ visualization of microbial density has remained an open problem. Here, functionalized buckyballs (e.g., C60-pyrrolidine tris acid) are shown to be a versatile platform that allows internalization within a microorganism without either adhering to the cell wall and cell membrane or binding to a matrix substrate such as soil. These molecular probes are validated via multi-scale imaging, to show association with microorganisms via fluorescence microscopy, positive cellular uptake via electron microscopy, and non-specific binding to the substrates through a combination of fluorescence and autoradiography imaging. We also demonstrate that cysteine-functionalized C60-pyrrolidine tris acid can differentiate live and dead microorganisms.

No MeSH data available.


Cellular uptake C60-Cystine for differentiating live and dead microorganisms (E. coli and B. subtilis), quantified by analyzing images from confocal microscopy.Live microorganisms show a significantly lower uptake than the dead microorganisms. The uptake is quantified by the average pixel intensities of micoorganisms over the background.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4561912&req=5

f11: Cellular uptake C60-Cystine for differentiating live and dead microorganisms (E. coli and B. subtilis), quantified by analyzing images from confocal microscopy.Live microorganisms show a significantly lower uptake than the dead microorganisms. The uptake is quantified by the average pixel intensities of micoorganisms over the background.

Mentions: To differentiate and quantify live and dead microorganisms, fluorescence microscopy is used. The results indicate a significantly lower signal for live cells than for dead cells for both E. coli and B. subtilis, as shown in Fig. 11. Both live E. coli and B. subtilis show a base line fluorescence signal of approximately 1,000 (in pixel intensity), whereas dead E. coli and B. subtilis show a significantly higher signals, of approximately 6,500 and 2,000, respectively. This observation is potentially due to the fact the dead cells have a leaky structure, which allows more C60-pyrrolidine tris-cysteine to cross their cellular membrane. In addition, the cell wall of dead B. subtilis (Gram-positive, and with a thicker cell wall) may not be as leaky as dead E. coli; thus, dead E. coli shows a higher fluorescence signal than B. subtilis. The net result is that functionalized C60-pyrrolidine tris acid can differentiate cellular states.


Functionalized Buckyballs for Visualizing Microbial Species in Different States and Environments.

Cheng Q, Aravind A, Buckley M, Gifford A, Parvin B - Sci Rep (2015)

Cellular uptake C60-Cystine for differentiating live and dead microorganisms (E. coli and B. subtilis), quantified by analyzing images from confocal microscopy.Live microorganisms show a significantly lower uptake than the dead microorganisms. The uptake is quantified by the average pixel intensities of micoorganisms over the background.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4561912&req=5

f11: Cellular uptake C60-Cystine for differentiating live and dead microorganisms (E. coli and B. subtilis), quantified by analyzing images from confocal microscopy.Live microorganisms show a significantly lower uptake than the dead microorganisms. The uptake is quantified by the average pixel intensities of micoorganisms over the background.
Mentions: To differentiate and quantify live and dead microorganisms, fluorescence microscopy is used. The results indicate a significantly lower signal for live cells than for dead cells for both E. coli and B. subtilis, as shown in Fig. 11. Both live E. coli and B. subtilis show a base line fluorescence signal of approximately 1,000 (in pixel intensity), whereas dead E. coli and B. subtilis show a significantly higher signals, of approximately 6,500 and 2,000, respectively. This observation is potentially due to the fact the dead cells have a leaky structure, which allows more C60-pyrrolidine tris-cysteine to cross their cellular membrane. In addition, the cell wall of dead B. subtilis (Gram-positive, and with a thicker cell wall) may not be as leaky as dead E. coli; thus, dead E. coli shows a higher fluorescence signal than B. subtilis. The net result is that functionalized C60-pyrrolidine tris acid can differentiate cellular states.

Bottom Line: To date, in situ visualization of microbial density has remained an open problem.Here, functionalized buckyballs (e.g., C60-pyrrolidine tris acid) are shown to be a versatile platform that allows internalization within a microorganism without either adhering to the cell wall and cell membrane or binding to a matrix substrate such as soil.We also demonstrate that cysteine-functionalized C60-pyrrolidine tris acid can differentiate live and dead microorganisms.

View Article: PubMed Central - PubMed

Affiliation: Department of Electrical and Biomedical Engineering, University of Nevada, Reno, 1664 N Virginia Street, Reno NV, 89503, USA.

ABSTRACT
To date, in situ visualization of microbial density has remained an open problem. Here, functionalized buckyballs (e.g., C60-pyrrolidine tris acid) are shown to be a versatile platform that allows internalization within a microorganism without either adhering to the cell wall and cell membrane or binding to a matrix substrate such as soil. These molecular probes are validated via multi-scale imaging, to show association with microorganisms via fluorescence microscopy, positive cellular uptake via electron microscopy, and non-specific binding to the substrates through a combination of fluorescence and autoradiography imaging. We also demonstrate that cysteine-functionalized C60-pyrrolidine tris acid can differentiate live and dead microorganisms.

No MeSH data available.