Limits...
Functionalized Buckyballs for Visualizing Microbial Species in Different States and Environments.

Cheng Q, Aravind A, Buckley M, Gifford A, Parvin B - Sci Rep (2015)

Bottom Line: To date, in situ visualization of microbial density has remained an open problem.Here, functionalized buckyballs (e.g., C60-pyrrolidine tris acid) are shown to be a versatile platform that allows internalization within a microorganism without either adhering to the cell wall and cell membrane or binding to a matrix substrate such as soil.We also demonstrate that cysteine-functionalized C60-pyrrolidine tris acid can differentiate live and dead microorganisms.

View Article: PubMed Central - PubMed

Affiliation: Department of Electrical and Biomedical Engineering, University of Nevada, Reno, 1664 N Virginia Street, Reno NV, 89503, USA.

ABSTRACT
To date, in situ visualization of microbial density has remained an open problem. Here, functionalized buckyballs (e.g., C60-pyrrolidine tris acid) are shown to be a versatile platform that allows internalization within a microorganism without either adhering to the cell wall and cell membrane or binding to a matrix substrate such as soil. These molecular probes are validated via multi-scale imaging, to show association with microorganisms via fluorescence microscopy, positive cellular uptake via electron microscopy, and non-specific binding to the substrates through a combination of fluorescence and autoradiography imaging. We also demonstrate that cysteine-functionalized C60-pyrrolidine tris acid can differentiate live and dead microorganisms.

No MeSH data available.


Schematic of C60-pyrrolidine tris acid, which indicates that C60-pyrrolidine tris acid has three potential decoration sites while maintaining the carbon cage structure intact.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4561912&req=5

f1: Schematic of C60-pyrrolidine tris acid, which indicates that C60-pyrrolidine tris acid has three potential decoration sites while maintaining the carbon cage structure intact.

Mentions: C60-pyrrolidine tris acid is a derivative of fullerene C60 (Fig. 1) and possesses three key properties: (i) containing three carboxyl groups that allow for further decoration (e.g., fluorescent tagging and radioactive isotope labeling); (ii) being extremely small (1–2 nm for a single molecule, 10–20 nm for a cluster of molecules), which facilitates intercellular movement and actions; and (iii) maintaining an intact carbon cage that retains enough hydrophobicity to inhibit adherence of C60-pyrrolidine tris acid to the soil matrix and organic matter. These properties have persuaded us to evaluate C60 as both a fluorescent and radiotracer reporter, where the rationale for functionalization is summarized below.


Functionalized Buckyballs for Visualizing Microbial Species in Different States and Environments.

Cheng Q, Aravind A, Buckley M, Gifford A, Parvin B - Sci Rep (2015)

Schematic of C60-pyrrolidine tris acid, which indicates that C60-pyrrolidine tris acid has three potential decoration sites while maintaining the carbon cage structure intact.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4561912&req=5

f1: Schematic of C60-pyrrolidine tris acid, which indicates that C60-pyrrolidine tris acid has three potential decoration sites while maintaining the carbon cage structure intact.
Mentions: C60-pyrrolidine tris acid is a derivative of fullerene C60 (Fig. 1) and possesses three key properties: (i) containing three carboxyl groups that allow for further decoration (e.g., fluorescent tagging and radioactive isotope labeling); (ii) being extremely small (1–2 nm for a single molecule, 10–20 nm for a cluster of molecules), which facilitates intercellular movement and actions; and (iii) maintaining an intact carbon cage that retains enough hydrophobicity to inhibit adherence of C60-pyrrolidine tris acid to the soil matrix and organic matter. These properties have persuaded us to evaluate C60 as both a fluorescent and radiotracer reporter, where the rationale for functionalization is summarized below.

Bottom Line: To date, in situ visualization of microbial density has remained an open problem.Here, functionalized buckyballs (e.g., C60-pyrrolidine tris acid) are shown to be a versatile platform that allows internalization within a microorganism without either adhering to the cell wall and cell membrane or binding to a matrix substrate such as soil.We also demonstrate that cysteine-functionalized C60-pyrrolidine tris acid can differentiate live and dead microorganisms.

View Article: PubMed Central - PubMed

Affiliation: Department of Electrical and Biomedical Engineering, University of Nevada, Reno, 1664 N Virginia Street, Reno NV, 89503, USA.

ABSTRACT
To date, in situ visualization of microbial density has remained an open problem. Here, functionalized buckyballs (e.g., C60-pyrrolidine tris acid) are shown to be a versatile platform that allows internalization within a microorganism without either adhering to the cell wall and cell membrane or binding to a matrix substrate such as soil. These molecular probes are validated via multi-scale imaging, to show association with microorganisms via fluorescence microscopy, positive cellular uptake via electron microscopy, and non-specific binding to the substrates through a combination of fluorescence and autoradiography imaging. We also demonstrate that cysteine-functionalized C60-pyrrolidine tris acid can differentiate live and dead microorganisms.

No MeSH data available.