Limits...
Identification and comparative expression analysis of odorant binding protein genes in the tobacco cutworm Spodoptera litura.

Gu SH, Zhou JJ, Gao S, Wang DH, Li XC, Guo YY, Zhang YJ - Sci Rep (2015)

Bottom Line: Some regular patterns and key conserved motifs of OBPs in genus Spodoptera are identified by MEME, and their putative roles in detecting odorants are discussed here.The motif-patterns between Lepidoptera OBPs and CSPs are also compared.The SlitOBPs identified here provide a starting point to facilitate functional studies of insect OBPs at the molecular level both in vivo and in vitro.

View Article: PubMed Central - PubMed

Affiliation: State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.

ABSTRACT
Insect odorant binding proteins (OBPs) are thought to involve in insects' olfaction perception. In the present study, we identified 38 OBP genes from the antennal transcriptomes of Spodoptera litura. Tissue expression profiles analysis revealed that 17 of the 38 SlitOBP transcripts were uniquely or primarily expressed in the antennae of both sexes, suggesting their putative role in chemoreception. The RPKM value analysis revealed that seven OBPs (SlitPBP1-3, SlitGOBP1-2, SlitOBP3 and SlitOBP5) are highly abundant in male and female antennae. Most S. litura antennal unigenes had high homology with Lepidoptera insects, especially genes of the genus Spodoptera. Phylogenetic analysis of the Lepidoptera OBPs demonstrated that the OBP genes from the genus Spodoptera (S. litura, Spodoptera littoralis and Spodoptera exigua) had a relatively close evolutionary relationship. Some regular patterns and key conserved motifs of OBPs in genus Spodoptera are identified by MEME, and their putative roles in detecting odorants are discussed here. The motif-patterns between Lepidoptera OBPs and CSPs are also compared. The SlitOBPs identified here provide a starting point to facilitate functional studies of insect OBPs at the molecular level both in vivo and in vitro.

No MeSH data available.


Gene Ontology (GO) classifications of S. litura antennal unigenes according to their involvement in biological processes, cellular component and molecular function.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4561897&req=5

f3: Gene Ontology (GO) classifications of S. litura antennal unigenes according to their involvement in biological processes, cellular component and molecular function.

Mentions: Similar to those genes that were found in the antennal transcriptomes of Manduca sexta34, S. littoralis35, Helicoverpa armigera36 and Agrotis ipsilon14, only 6266 of the 21223 S. litura antennal unigenes (29.3%) could be annotated into different functional groups (biological process, cellular components and molecular functions) according to Gene Ontology (GO) category analysis37(Fig. 3). Some transcripts were annotated into more than one GO category. The numbers of each GO category were similar between the male and female antennal transcriptomes (Fig. 3). The cellular process (3035 male antennal unigenes and 3251 female antennal unigenes) and metabolic process (2374 male antennal unigenes and 2548 female antennal unigenes) GO categories were most abundantly represented within the biological process GO ontology. In the cellular components GO ontology, the transcripts were primarily distributed in the cell (3279 male antennal unigenes and 3517 female antennal unigenes) and in cell part (3055 male antennal unigenes and 3280 female antennal unigenes). The GO analysis also showed that the binding (2221 male antennal unigenes and 2400 female antennal unigenes) and catalytic activity (2255 male antennal unigenes and 2404 female antennal unigenes) were most abundant in the molecular function ontology (Fig. 3).


Identification and comparative expression analysis of odorant binding protein genes in the tobacco cutworm Spodoptera litura.

Gu SH, Zhou JJ, Gao S, Wang DH, Li XC, Guo YY, Zhang YJ - Sci Rep (2015)

Gene Ontology (GO) classifications of S. litura antennal unigenes according to their involvement in biological processes, cellular component and molecular function.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4561897&req=5

f3: Gene Ontology (GO) classifications of S. litura antennal unigenes according to their involvement in biological processes, cellular component and molecular function.
Mentions: Similar to those genes that were found in the antennal transcriptomes of Manduca sexta34, S. littoralis35, Helicoverpa armigera36 and Agrotis ipsilon14, only 6266 of the 21223 S. litura antennal unigenes (29.3%) could be annotated into different functional groups (biological process, cellular components and molecular functions) according to Gene Ontology (GO) category analysis37(Fig. 3). Some transcripts were annotated into more than one GO category. The numbers of each GO category were similar between the male and female antennal transcriptomes (Fig. 3). The cellular process (3035 male antennal unigenes and 3251 female antennal unigenes) and metabolic process (2374 male antennal unigenes and 2548 female antennal unigenes) GO categories were most abundantly represented within the biological process GO ontology. In the cellular components GO ontology, the transcripts were primarily distributed in the cell (3279 male antennal unigenes and 3517 female antennal unigenes) and in cell part (3055 male antennal unigenes and 3280 female antennal unigenes). The GO analysis also showed that the binding (2221 male antennal unigenes and 2400 female antennal unigenes) and catalytic activity (2255 male antennal unigenes and 2404 female antennal unigenes) were most abundant in the molecular function ontology (Fig. 3).

Bottom Line: Some regular patterns and key conserved motifs of OBPs in genus Spodoptera are identified by MEME, and their putative roles in detecting odorants are discussed here.The motif-patterns between Lepidoptera OBPs and CSPs are also compared.The SlitOBPs identified here provide a starting point to facilitate functional studies of insect OBPs at the molecular level both in vivo and in vitro.

View Article: PubMed Central - PubMed

Affiliation: State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.

ABSTRACT
Insect odorant binding proteins (OBPs) are thought to involve in insects' olfaction perception. In the present study, we identified 38 OBP genes from the antennal transcriptomes of Spodoptera litura. Tissue expression profiles analysis revealed that 17 of the 38 SlitOBP transcripts were uniquely or primarily expressed in the antennae of both sexes, suggesting their putative role in chemoreception. The RPKM value analysis revealed that seven OBPs (SlitPBP1-3, SlitGOBP1-2, SlitOBP3 and SlitOBP5) are highly abundant in male and female antennae. Most S. litura antennal unigenes had high homology with Lepidoptera insects, especially genes of the genus Spodoptera. Phylogenetic analysis of the Lepidoptera OBPs demonstrated that the OBP genes from the genus Spodoptera (S. litura, Spodoptera littoralis and Spodoptera exigua) had a relatively close evolutionary relationship. Some regular patterns and key conserved motifs of OBPs in genus Spodoptera are identified by MEME, and their putative roles in detecting odorants are discussed here. The motif-patterns between Lepidoptera OBPs and CSPs are also compared. The SlitOBPs identified here provide a starting point to facilitate functional studies of insect OBPs at the molecular level both in vivo and in vitro.

No MeSH data available.