Limits...
Identification and comparative expression analysis of odorant binding protein genes in the tobacco cutworm Spodoptera litura.

Gu SH, Zhou JJ, Gao S, Wang DH, Li XC, Guo YY, Zhang YJ - Sci Rep (2015)

Bottom Line: Some regular patterns and key conserved motifs of OBPs in genus Spodoptera are identified by MEME, and their putative roles in detecting odorants are discussed here.The motif-patterns between Lepidoptera OBPs and CSPs are also compared.The SlitOBPs identified here provide a starting point to facilitate functional studies of insect OBPs at the molecular level both in vivo and in vitro.

View Article: PubMed Central - PubMed

Affiliation: State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.

ABSTRACT
Insect odorant binding proteins (OBPs) are thought to involve in insects' olfaction perception. In the present study, we identified 38 OBP genes from the antennal transcriptomes of Spodoptera litura. Tissue expression profiles analysis revealed that 17 of the 38 SlitOBP transcripts were uniquely or primarily expressed in the antennae of both sexes, suggesting their putative role in chemoreception. The RPKM value analysis revealed that seven OBPs (SlitPBP1-3, SlitGOBP1-2, SlitOBP3 and SlitOBP5) are highly abundant in male and female antennae. Most S. litura antennal unigenes had high homology with Lepidoptera insects, especially genes of the genus Spodoptera. Phylogenetic analysis of the Lepidoptera OBPs demonstrated that the OBP genes from the genus Spodoptera (S. litura, Spodoptera littoralis and Spodoptera exigua) had a relatively close evolutionary relationship. Some regular patterns and key conserved motifs of OBPs in genus Spodoptera are identified by MEME, and their putative roles in detecting odorants are discussed here. The motif-patterns between Lepidoptera OBPs and CSPs are also compared. The SlitOBPs identified here provide a starting point to facilitate functional studies of insect OBPs at the molecular level both in vivo and in vitro.

No MeSH data available.


The size distribution of the assembled unigenes from S. litura male and female antennal transcriptome.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4561897&req=5

f1: The size distribution of the assembled unigenes from S. litura male and female antennal transcriptome.

Mentions: The antennal cDNA libraries of the male and female S. litura moth were sequenced using the 454 GS FLX Titanium platform. After 1/4 sequencing run of each sex, a total of 178345 (mean length 516 bp) and 253266 raw reads (mean length 514 bp) were produced from the male and female antennae samples, respectively. After trimming the adaptor sequences, contaminating sequences and low quality sequences, 177227 (mean length 494 bp) and 251805 clean reads (mean length 495 bp) were remained for the following assembly from male and female antennae, and produced 16478 (mean length 864 bp) and 19000 (mean length 808 bp) unigenes, respectively (Fig. 1). Additionally, we assembled all clean reads from the male and female antennae together and ultimately generated 21223 unigenes. Among these unigenes, 19393 were contigs (91.4%) and 1830 were singletons (8.6%). The assembled unigene lengths ranged from 100 bp to 10423 bp with an average length of 766 bp. An overview of the sequencing and assembly process is presented in Table 1. We also downloaded and assembled a recently released Hiseq2000 transcriptome data of S. litura antennae in the Short Read Archive (SRA) database at NCBI (Release data: 05/23/2015) and obtained 75028 unigenes with an average length of 589 bp. The two assemblies are combined and used for the OBP identification of S. litura.


Identification and comparative expression analysis of odorant binding protein genes in the tobacco cutworm Spodoptera litura.

Gu SH, Zhou JJ, Gao S, Wang DH, Li XC, Guo YY, Zhang YJ - Sci Rep (2015)

The size distribution of the assembled unigenes from S. litura male and female antennal transcriptome.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4561897&req=5

f1: The size distribution of the assembled unigenes from S. litura male and female antennal transcriptome.
Mentions: The antennal cDNA libraries of the male and female S. litura moth were sequenced using the 454 GS FLX Titanium platform. After 1/4 sequencing run of each sex, a total of 178345 (mean length 516 bp) and 253266 raw reads (mean length 514 bp) were produced from the male and female antennae samples, respectively. After trimming the adaptor sequences, contaminating sequences and low quality sequences, 177227 (mean length 494 bp) and 251805 clean reads (mean length 495 bp) were remained for the following assembly from male and female antennae, and produced 16478 (mean length 864 bp) and 19000 (mean length 808 bp) unigenes, respectively (Fig. 1). Additionally, we assembled all clean reads from the male and female antennae together and ultimately generated 21223 unigenes. Among these unigenes, 19393 were contigs (91.4%) and 1830 were singletons (8.6%). The assembled unigene lengths ranged from 100 bp to 10423 bp with an average length of 766 bp. An overview of the sequencing and assembly process is presented in Table 1. We also downloaded and assembled a recently released Hiseq2000 transcriptome data of S. litura antennae in the Short Read Archive (SRA) database at NCBI (Release data: 05/23/2015) and obtained 75028 unigenes with an average length of 589 bp. The two assemblies are combined and used for the OBP identification of S. litura.

Bottom Line: Some regular patterns and key conserved motifs of OBPs in genus Spodoptera are identified by MEME, and their putative roles in detecting odorants are discussed here.The motif-patterns between Lepidoptera OBPs and CSPs are also compared.The SlitOBPs identified here provide a starting point to facilitate functional studies of insect OBPs at the molecular level both in vivo and in vitro.

View Article: PubMed Central - PubMed

Affiliation: State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.

ABSTRACT
Insect odorant binding proteins (OBPs) are thought to involve in insects' olfaction perception. In the present study, we identified 38 OBP genes from the antennal transcriptomes of Spodoptera litura. Tissue expression profiles analysis revealed that 17 of the 38 SlitOBP transcripts were uniquely or primarily expressed in the antennae of both sexes, suggesting their putative role in chemoreception. The RPKM value analysis revealed that seven OBPs (SlitPBP1-3, SlitGOBP1-2, SlitOBP3 and SlitOBP5) are highly abundant in male and female antennae. Most S. litura antennal unigenes had high homology with Lepidoptera insects, especially genes of the genus Spodoptera. Phylogenetic analysis of the Lepidoptera OBPs demonstrated that the OBP genes from the genus Spodoptera (S. litura, Spodoptera littoralis and Spodoptera exigua) had a relatively close evolutionary relationship. Some regular patterns and key conserved motifs of OBPs in genus Spodoptera are identified by MEME, and their putative roles in detecting odorants are discussed here. The motif-patterns between Lepidoptera OBPs and CSPs are also compared. The SlitOBPs identified here provide a starting point to facilitate functional studies of insect OBPs at the molecular level both in vivo and in vitro.

No MeSH data available.