Limits...
Natural variation in cross-talk between glucosinolates and onset of flowering in Arabidopsis.

Jensen LM, Jepsen HS, Halkier BA, Kliebenstein DJ, Burow M - Front Plant Sci (2015)

Bottom Line: We have introduced the two highly similar enzymes into two different AOP () accessions, Col-0 and Cph-0, and found that the genes differ in their ability to affect glucosinolate levels and flowering time across the accessions.This indicated that the different glucosinolates produced by AOP2 and AOP3 serve specific regulatory roles in controlling these phenotypes.This variation likely reflects an adaptation to survival in different environments.

View Article: PubMed Central - PubMed

Affiliation: Department of Plant and Environmental Sciences, Faculty of Science, DNRF Center DynaMo, University of Copenhagen Frederiksberg, Denmark ; Department of Plant and Environmental Sciences, Faculty of Science, Copenhagen Plant Science Centre, University of Copenhagen Frederiksberg, Denmark.

ABSTRACT
Naturally variable regulatory networks control different biological processes including reproduction and defense. This variation within regulatory networks enables plants to optimize defense and reproduction in different environments. In this study we investigate the ability of two enzyme-encoding genes in the glucosinolate pathway, AOP2 and AOP3, to affect glucosinolate accumulation and flowering time. We have introduced the two highly similar enzymes into two different AOP () accessions, Col-0 and Cph-0, and found that the genes differ in their ability to affect glucosinolate levels and flowering time across the accessions. This indicated that the different glucosinolates produced by AOP2 and AOP3 serve specific regulatory roles in controlling these phenotypes. While the changes in glucosinolate levels were similar in both accessions, the effect on flowering time was dependent on the genetic background pointing to natural variation in cross-talk between defense chemistry and onset of flowering. This variation likely reflects an adaptation to survival in different environments.

No MeSH data available.


Related in: MedlinePlus

Effects of AOP2 and AOP3 on glucosinolate accumulation in Cph-0. Glucosinolate concentrations in leaves of Cph-0 WT including empty vector controls (black), n = 104, Cph-0 AOP2 (light gray), n = 73 (3 independent insertion lines), and Cph-0 AOP3 (dark gray), n = 60 (3 independent insertion lines), as (A) Total SC and LC, and (B) The C3 substrate and products. Means (+ standard deviations) are shown for analysis of two experimental repeats of the lines. Nested ANOVA across independent lines and post testing was used for statistical analysis. Letters indicate significant differences (P < 0.05) between genotypes.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4561820&req=5

Figure 4: Effects of AOP2 and AOP3 on glucosinolate accumulation in Cph-0. Glucosinolate concentrations in leaves of Cph-0 WT including empty vector controls (black), n = 104, Cph-0 AOP2 (light gray), n = 73 (3 independent insertion lines), and Cph-0 AOP3 (dark gray), n = 60 (3 independent insertion lines), as (A) Total SC and LC, and (B) The C3 substrate and products. Means (+ standard deviations) are shown for analysis of two experimental repeats of the lines. Nested ANOVA across independent lines and post testing was used for statistical analysis. Letters indicate significant differences (P < 0.05) between genotypes.

Mentions: In the Cph-0 background, 4msb is absent and instead, 3msp is the major SC glucosinolate. Consequently, introduction of the enzymes into the Cph-0 led to fewer different glucosinolate structures than in Col-0. As expected, AOP2 expression resulted in the formation of 2-propenyl glucosinolate from 3msp, whereas AOP3 formed 3ohp from the same substrate (Figure 4B, for all individual glucosinolates see Figure S1).


Natural variation in cross-talk between glucosinolates and onset of flowering in Arabidopsis.

Jensen LM, Jepsen HS, Halkier BA, Kliebenstein DJ, Burow M - Front Plant Sci (2015)

Effects of AOP2 and AOP3 on glucosinolate accumulation in Cph-0. Glucosinolate concentrations in leaves of Cph-0 WT including empty vector controls (black), n = 104, Cph-0 AOP2 (light gray), n = 73 (3 independent insertion lines), and Cph-0 AOP3 (dark gray), n = 60 (3 independent insertion lines), as (A) Total SC and LC, and (B) The C3 substrate and products. Means (+ standard deviations) are shown for analysis of two experimental repeats of the lines. Nested ANOVA across independent lines and post testing was used for statistical analysis. Letters indicate significant differences (P < 0.05) between genotypes.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4561820&req=5

Figure 4: Effects of AOP2 and AOP3 on glucosinolate accumulation in Cph-0. Glucosinolate concentrations in leaves of Cph-0 WT including empty vector controls (black), n = 104, Cph-0 AOP2 (light gray), n = 73 (3 independent insertion lines), and Cph-0 AOP3 (dark gray), n = 60 (3 independent insertion lines), as (A) Total SC and LC, and (B) The C3 substrate and products. Means (+ standard deviations) are shown for analysis of two experimental repeats of the lines. Nested ANOVA across independent lines and post testing was used for statistical analysis. Letters indicate significant differences (P < 0.05) between genotypes.
Mentions: In the Cph-0 background, 4msb is absent and instead, 3msp is the major SC glucosinolate. Consequently, introduction of the enzymes into the Cph-0 led to fewer different glucosinolate structures than in Col-0. As expected, AOP2 expression resulted in the formation of 2-propenyl glucosinolate from 3msp, whereas AOP3 formed 3ohp from the same substrate (Figure 4B, for all individual glucosinolates see Figure S1).

Bottom Line: We have introduced the two highly similar enzymes into two different AOP () accessions, Col-0 and Cph-0, and found that the genes differ in their ability to affect glucosinolate levels and flowering time across the accessions.This indicated that the different glucosinolates produced by AOP2 and AOP3 serve specific regulatory roles in controlling these phenotypes.This variation likely reflects an adaptation to survival in different environments.

View Article: PubMed Central - PubMed

Affiliation: Department of Plant and Environmental Sciences, Faculty of Science, DNRF Center DynaMo, University of Copenhagen Frederiksberg, Denmark ; Department of Plant and Environmental Sciences, Faculty of Science, Copenhagen Plant Science Centre, University of Copenhagen Frederiksberg, Denmark.

ABSTRACT
Naturally variable regulatory networks control different biological processes including reproduction and defense. This variation within regulatory networks enables plants to optimize defense and reproduction in different environments. In this study we investigate the ability of two enzyme-encoding genes in the glucosinolate pathway, AOP2 and AOP3, to affect glucosinolate accumulation and flowering time. We have introduced the two highly similar enzymes into two different AOP () accessions, Col-0 and Cph-0, and found that the genes differ in their ability to affect glucosinolate levels and flowering time across the accessions. This indicated that the different glucosinolates produced by AOP2 and AOP3 serve specific regulatory roles in controlling these phenotypes. While the changes in glucosinolate levels were similar in both accessions, the effect on flowering time was dependent on the genetic background pointing to natural variation in cross-talk between defense chemistry and onset of flowering. This variation likely reflects an adaptation to survival in different environments.

No MeSH data available.


Related in: MedlinePlus