Limits...
Natural variation in cross-talk between glucosinolates and onset of flowering in Arabidopsis.

Jensen LM, Jepsen HS, Halkier BA, Kliebenstein DJ, Burow M - Front Plant Sci (2015)

Bottom Line: We have introduced the two highly similar enzymes into two different AOP () accessions, Col-0 and Cph-0, and found that the genes differ in their ability to affect glucosinolate levels and flowering time across the accessions.This indicated that the different glucosinolates produced by AOP2 and AOP3 serve specific regulatory roles in controlling these phenotypes.This variation likely reflects an adaptation to survival in different environments.

View Article: PubMed Central - PubMed

Affiliation: Department of Plant and Environmental Sciences, Faculty of Science, DNRF Center DynaMo, University of Copenhagen Frederiksberg, Denmark ; Department of Plant and Environmental Sciences, Faculty of Science, Copenhagen Plant Science Centre, University of Copenhagen Frederiksberg, Denmark.

ABSTRACT
Naturally variable regulatory networks control different biological processes including reproduction and defense. This variation within regulatory networks enables plants to optimize defense and reproduction in different environments. In this study we investigate the ability of two enzyme-encoding genes in the glucosinolate pathway, AOP2 and AOP3, to affect glucosinolate accumulation and flowering time. We have introduced the two highly similar enzymes into two different AOP () accessions, Col-0 and Cph-0, and found that the genes differ in their ability to affect glucosinolate levels and flowering time across the accessions. This indicated that the different glucosinolates produced by AOP2 and AOP3 serve specific regulatory roles in controlling these phenotypes. While the changes in glucosinolate levels were similar in both accessions, the effect on flowering time was dependent on the genetic background pointing to natural variation in cross-talk between defense chemistry and onset of flowering. This variation likely reflects an adaptation to survival in different environments.

No MeSH data available.


Related in: MedlinePlus

Enzymatic functions of MAMs and AOPs in the aliphatic glucosinolate pathway. The chain length of aliphatic glucosinolates is controlled by GS-ELONG: expression of MAM2 in the absence of MAM1 leads to C3 glucosinolates, MAM1 is required for the production of C4 glucosinolates, and MAM3 is responsible for the production of LC glucosinolates with C8 as the predominant chain length. The C3 glucosinolate, 3-methylsulfinylpropyl glucosinolate (3msp), can be converted to 3-hydroxypropyl glucosinolate (3ohp) by AOP3 or to 2-propenyl glucosinolate (2-prop) by AOP2. The C4 glucosinolate, 4-methylsulfinylbutyl glucosinolate (4msb), is converted to 3-butenyl by AOP2 glucosinolate (3-but), which is further converted by GS-OH to 2(R/S)-hydroxy-3-butenyl glucosinolate. Here, we report that 4msb can also be converted by AOP3 to give 4-hydrozybutyl glucosinolate (4ohb), (see Figure 3).
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4561820&req=5

Figure 2: Enzymatic functions of MAMs and AOPs in the aliphatic glucosinolate pathway. The chain length of aliphatic glucosinolates is controlled by GS-ELONG: expression of MAM2 in the absence of MAM1 leads to C3 glucosinolates, MAM1 is required for the production of C4 glucosinolates, and MAM3 is responsible for the production of LC glucosinolates with C8 as the predominant chain length. The C3 glucosinolate, 3-methylsulfinylpropyl glucosinolate (3msp), can be converted to 3-hydroxypropyl glucosinolate (3ohp) by AOP3 or to 2-propenyl glucosinolate (2-prop) by AOP2. The C4 glucosinolate, 4-methylsulfinylbutyl glucosinolate (4msb), is converted to 3-butenyl by AOP2 glucosinolate (3-but), which is further converted by GS-OH to 2(R/S)-hydroxy-3-butenyl glucosinolate. Here, we report that 4msb can also be converted by AOP3 to give 4-hydrozybutyl glucosinolate (4ohb), (see Figure 3).

Mentions: The GS-AOP locus encodes the two 2-oxoglutarate-dependent dioxygenases AOP2 and AOP3, which convert specific short-chained (SC) methylsulfinylalkyl glucosinolate precursors to alkenyl glucosinolates and hydroxyalkyl glucosinolates, respectively (Figure 2), (Mithen et al., 1995; Kliebenstein et al., 2001c). While AOP2 catalyzes the conversion of the 3-methylsulfinylpropyl (3msp) to the 2-propenyl glucosinolate as well as the conversion of 4-methylsulfinylbutyl (4msb) to 3-butenyl glucosinolate, AOP3 activity has only been detected for 3msp, which is converted by AOP3 to form 3-hydroxypropyl glucosinolate (3ohp), (Kliebenstein et al., 2001c). Natural variation in sequence and expression patterns of AOP2 and AOP3 leads to different glucosinolate profiles among Arabidopsis accessions. Studies investigating natural AOP alleles have linked the expression of an enzymatically functional AOP2 or AOP3 in leaves to increased glucosinolate content, however, with different regulatory potential (Kliebenstein et al., 2001b; Wentzell et al., 2007; Rohr et al., 2009, 2012). Overall, accessions expressing a functional AOP2 enzyme show the highest glucosinolate levels, followed by AOP3 accessions, which still accumulate glucosinolates to higher levels than AOP accessions (Kliebenstein et al., 2001b).


Natural variation in cross-talk between glucosinolates and onset of flowering in Arabidopsis.

Jensen LM, Jepsen HS, Halkier BA, Kliebenstein DJ, Burow M - Front Plant Sci (2015)

Enzymatic functions of MAMs and AOPs in the aliphatic glucosinolate pathway. The chain length of aliphatic glucosinolates is controlled by GS-ELONG: expression of MAM2 in the absence of MAM1 leads to C3 glucosinolates, MAM1 is required for the production of C4 glucosinolates, and MAM3 is responsible for the production of LC glucosinolates with C8 as the predominant chain length. The C3 glucosinolate, 3-methylsulfinylpropyl glucosinolate (3msp), can be converted to 3-hydroxypropyl glucosinolate (3ohp) by AOP3 or to 2-propenyl glucosinolate (2-prop) by AOP2. The C4 glucosinolate, 4-methylsulfinylbutyl glucosinolate (4msb), is converted to 3-butenyl by AOP2 glucosinolate (3-but), which is further converted by GS-OH to 2(R/S)-hydroxy-3-butenyl glucosinolate. Here, we report that 4msb can also be converted by AOP3 to give 4-hydrozybutyl glucosinolate (4ohb), (see Figure 3).
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4561820&req=5

Figure 2: Enzymatic functions of MAMs and AOPs in the aliphatic glucosinolate pathway. The chain length of aliphatic glucosinolates is controlled by GS-ELONG: expression of MAM2 in the absence of MAM1 leads to C3 glucosinolates, MAM1 is required for the production of C4 glucosinolates, and MAM3 is responsible for the production of LC glucosinolates with C8 as the predominant chain length. The C3 glucosinolate, 3-methylsulfinylpropyl glucosinolate (3msp), can be converted to 3-hydroxypropyl glucosinolate (3ohp) by AOP3 or to 2-propenyl glucosinolate (2-prop) by AOP2. The C4 glucosinolate, 4-methylsulfinylbutyl glucosinolate (4msb), is converted to 3-butenyl by AOP2 glucosinolate (3-but), which is further converted by GS-OH to 2(R/S)-hydroxy-3-butenyl glucosinolate. Here, we report that 4msb can also be converted by AOP3 to give 4-hydrozybutyl glucosinolate (4ohb), (see Figure 3).
Mentions: The GS-AOP locus encodes the two 2-oxoglutarate-dependent dioxygenases AOP2 and AOP3, which convert specific short-chained (SC) methylsulfinylalkyl glucosinolate precursors to alkenyl glucosinolates and hydroxyalkyl glucosinolates, respectively (Figure 2), (Mithen et al., 1995; Kliebenstein et al., 2001c). While AOP2 catalyzes the conversion of the 3-methylsulfinylpropyl (3msp) to the 2-propenyl glucosinolate as well as the conversion of 4-methylsulfinylbutyl (4msb) to 3-butenyl glucosinolate, AOP3 activity has only been detected for 3msp, which is converted by AOP3 to form 3-hydroxypropyl glucosinolate (3ohp), (Kliebenstein et al., 2001c). Natural variation in sequence and expression patterns of AOP2 and AOP3 leads to different glucosinolate profiles among Arabidopsis accessions. Studies investigating natural AOP alleles have linked the expression of an enzymatically functional AOP2 or AOP3 in leaves to increased glucosinolate content, however, with different regulatory potential (Kliebenstein et al., 2001b; Wentzell et al., 2007; Rohr et al., 2009, 2012). Overall, accessions expressing a functional AOP2 enzyme show the highest glucosinolate levels, followed by AOP3 accessions, which still accumulate glucosinolates to higher levels than AOP accessions (Kliebenstein et al., 2001b).

Bottom Line: We have introduced the two highly similar enzymes into two different AOP () accessions, Col-0 and Cph-0, and found that the genes differ in their ability to affect glucosinolate levels and flowering time across the accessions.This indicated that the different glucosinolates produced by AOP2 and AOP3 serve specific regulatory roles in controlling these phenotypes.This variation likely reflects an adaptation to survival in different environments.

View Article: PubMed Central - PubMed

Affiliation: Department of Plant and Environmental Sciences, Faculty of Science, DNRF Center DynaMo, University of Copenhagen Frederiksberg, Denmark ; Department of Plant and Environmental Sciences, Faculty of Science, Copenhagen Plant Science Centre, University of Copenhagen Frederiksberg, Denmark.

ABSTRACT
Naturally variable regulatory networks control different biological processes including reproduction and defense. This variation within regulatory networks enables plants to optimize defense and reproduction in different environments. In this study we investigate the ability of two enzyme-encoding genes in the glucosinolate pathway, AOP2 and AOP3, to affect glucosinolate accumulation and flowering time. We have introduced the two highly similar enzymes into two different AOP () accessions, Col-0 and Cph-0, and found that the genes differ in their ability to affect glucosinolate levels and flowering time across the accessions. This indicated that the different glucosinolates produced by AOP2 and AOP3 serve specific regulatory roles in controlling these phenotypes. While the changes in glucosinolate levels were similar in both accessions, the effect on flowering time was dependent on the genetic background pointing to natural variation in cross-talk between defense chemistry and onset of flowering. This variation likely reflects an adaptation to survival in different environments.

No MeSH data available.


Related in: MedlinePlus