Limits...
Dubious decision evidence and criterion flexibility in recognition memory.

Kantner J, Vettel JM, Miller MB - Front Psychol (2015)

Bottom Line: Critical errors were frequent, similar across sources of motivation, and only moderately reduced by feedback.In Experiment 3, critical errors were only modestly reduced in a version of the security patrol with no study phase.These findings indicate that participants use even transparently non-probative information as an alternative to heavy reliance on a decision rule, a strategy that precludes optimal criterion placement.

View Article: PubMed Central - PubMed

Affiliation: U.S. Army Research Laboratory, Aberdeen, MD USA ; University of California, Santa Barbara, Santa Barbara, CA USA.

ABSTRACT
When old-new recognition judgments must be based on ambiguous memory evidence, a proper criterion for responding "old" can substantially improve accuracy, but participants are typically suboptimal in their placement of decision criteria. Various accounts of suboptimal criterion placement have been proposed. The most parsimonious, however, is that subjects simply over-rely on memory evidence - however faulty - as a basis for decisions. We tested this account with a novel recognition paradigm in which old-new discrimination was minimal and critical errors were avoided by adopting highly liberal or conservative biases. In Experiment 1, criterion shifts were necessary to adapt to changing target probabilities or, in a "security patrol" scenario, to avoid either letting dangerous people go free (misses) or harming innocent people (false alarms). Experiment 2 added a condition in which financial incentives drove criterion shifts. Critical errors were frequent, similar across sources of motivation, and only moderately reduced by feedback. In Experiment 3, critical errors were only modestly reduced in a version of the security patrol with no study phase. These findings indicate that participants use even transparently non-probative information as an alternative to heavy reliance on a decision rule, a strategy that precludes optimal criterion placement.

No MeSH data available.


Illustration of decision making in Experiment 3, study-free security patrol, from a multidimensional signal detection theory perspective. Dashed lines represent noise distributions; solid lines represent signal distributions. (A) Test probes are called “suspicious” if their familiarity exceeds a criterial level. (B) Test probes are called “suspicious” if the darkness of their skin exceeds a criterial level. (C) Either familiarity or skin color may be used to make judgments.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4561817&req=5

Figure 9: Illustration of decision making in Experiment 3, study-free security patrol, from a multidimensional signal detection theory perspective. Dashed lines represent noise distributions; solid lines represent signal distributions. (A) Test probes are called “suspicious” if their familiarity exceeds a criterial level. (B) Test probes are called “suspicious” if the darkness of their skin exceeds a criterial level. (C) Either familiarity or skin color may be used to make judgments.

Mentions: We illustrate how this framework might be applied to recognition decisions under ambiguous (or absent) memory evidence in Figure 9, using the conservative, study-free security patrol paradigm from Experiment 3 as an example. In this patrol, subjects are instructed to avoid false alarms at all costs; between these instructions and the absence of memory evidence, the most appropriate response is to say “innocent” on every trial, yet most subjects’ false alarm rates were still quite high. Figure 9 depicts three possible explanations for this behavior within a multidimensional signal detection framework. For simplicity, each scenario assumes that recognition decisions can be made according to a test probe’s position on a memory (familiarity) evidence axis or a perceptual (skin color) evidence axis; however, in practice any number of dimensions may become relevant for classifying a probe as recognized. Panel A depicts the use of familiarity as a basis for judgments in the study-free patrol. Without a study session, there is clearly no memory or familiarity signal relevant to the recognition decision. However, even novel items will carry some familiarity based on extra-experimental associations and encounters with previous test items. Given that subjects were instructed to make a memory judgment even with no prior study session, they may still have felt compelled to make a judgment according to the familiarity dimension. Alternatively, subjects may have ignored the instructions not to make a judgment on the basis of a perceptual characteristic (Panel B). The use of skin color as a basis for determining whether or not a test item was a suspicious individual could also lead to a high proportion of false alarms. Finally, subjects may have been using more than one dimension to decide (Panel C). For example, subjects may have responded “suspicious” if the test figure seemed familiar despite the lack of a study session or if the skin color was dark enough to surpass a criterion along that dimension. As noted above, any number of dimensions not depicted may also have been used by subjects. The use of any such dimensions as an alternative to an appropriate decision criterion will lead to an increase in critical errors.


Dubious decision evidence and criterion flexibility in recognition memory.

Kantner J, Vettel JM, Miller MB - Front Psychol (2015)

Illustration of decision making in Experiment 3, study-free security patrol, from a multidimensional signal detection theory perspective. Dashed lines represent noise distributions; solid lines represent signal distributions. (A) Test probes are called “suspicious” if their familiarity exceeds a criterial level. (B) Test probes are called “suspicious” if the darkness of their skin exceeds a criterial level. (C) Either familiarity or skin color may be used to make judgments.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4561817&req=5

Figure 9: Illustration of decision making in Experiment 3, study-free security patrol, from a multidimensional signal detection theory perspective. Dashed lines represent noise distributions; solid lines represent signal distributions. (A) Test probes are called “suspicious” if their familiarity exceeds a criterial level. (B) Test probes are called “suspicious” if the darkness of their skin exceeds a criterial level. (C) Either familiarity or skin color may be used to make judgments.
Mentions: We illustrate how this framework might be applied to recognition decisions under ambiguous (or absent) memory evidence in Figure 9, using the conservative, study-free security patrol paradigm from Experiment 3 as an example. In this patrol, subjects are instructed to avoid false alarms at all costs; between these instructions and the absence of memory evidence, the most appropriate response is to say “innocent” on every trial, yet most subjects’ false alarm rates were still quite high. Figure 9 depicts three possible explanations for this behavior within a multidimensional signal detection framework. For simplicity, each scenario assumes that recognition decisions can be made according to a test probe’s position on a memory (familiarity) evidence axis or a perceptual (skin color) evidence axis; however, in practice any number of dimensions may become relevant for classifying a probe as recognized. Panel A depicts the use of familiarity as a basis for judgments in the study-free patrol. Without a study session, there is clearly no memory or familiarity signal relevant to the recognition decision. However, even novel items will carry some familiarity based on extra-experimental associations and encounters with previous test items. Given that subjects were instructed to make a memory judgment even with no prior study session, they may still have felt compelled to make a judgment according to the familiarity dimension. Alternatively, subjects may have ignored the instructions not to make a judgment on the basis of a perceptual characteristic (Panel B). The use of skin color as a basis for determining whether or not a test item was a suspicious individual could also lead to a high proportion of false alarms. Finally, subjects may have been using more than one dimension to decide (Panel C). For example, subjects may have responded “suspicious” if the test figure seemed familiar despite the lack of a study session or if the skin color was dark enough to surpass a criterion along that dimension. As noted above, any number of dimensions not depicted may also have been used by subjects. The use of any such dimensions as an alternative to an appropriate decision criterion will lead to an increase in critical errors.

Bottom Line: Critical errors were frequent, similar across sources of motivation, and only moderately reduced by feedback.In Experiment 3, critical errors were only modestly reduced in a version of the security patrol with no study phase.These findings indicate that participants use even transparently non-probative information as an alternative to heavy reliance on a decision rule, a strategy that precludes optimal criterion placement.

View Article: PubMed Central - PubMed

Affiliation: U.S. Army Research Laboratory, Aberdeen, MD USA ; University of California, Santa Barbara, Santa Barbara, CA USA.

ABSTRACT
When old-new recognition judgments must be based on ambiguous memory evidence, a proper criterion for responding "old" can substantially improve accuracy, but participants are typically suboptimal in their placement of decision criteria. Various accounts of suboptimal criterion placement have been proposed. The most parsimonious, however, is that subjects simply over-rely on memory evidence - however faulty - as a basis for decisions. We tested this account with a novel recognition paradigm in which old-new discrimination was minimal and critical errors were avoided by adopting highly liberal or conservative biases. In Experiment 1, criterion shifts were necessary to adapt to changing target probabilities or, in a "security patrol" scenario, to avoid either letting dangerous people go free (misses) or harming innocent people (false alarms). Experiment 2 added a condition in which financial incentives drove criterion shifts. Critical errors were frequent, similar across sources of motivation, and only moderately reduced by feedback. In Experiment 3, critical errors were only modestly reduced in a version of the security patrol with no study phase. These findings indicate that participants use even transparently non-probative information as an alternative to heavy reliance on a decision rule, a strategy that precludes optimal criterion placement.

No MeSH data available.