Limits...
Neurochemical measurements in the zebrafish brain.

Jones LJ, McCutcheon JE, Young AM, Norton WH - Front Behav Neurosci (2015)

Bottom Line: In this study we have used in vitro FSCV to measure the release of analytes in the adult zebrafish telencephalon.We compare different stimulation methods and present a characterization of neurochemical changes in the wild-type zebrafish brain.This study represents the first FSCV recordings in zebrafish, thus paving the way for neurochemical analysis of the fish brain.

View Article: PubMed Central - PubMed

Affiliation: Department of Neuroscience, Psychology and Behaviour, University of Leicester Leicester, UK.

ABSTRACT
The zebrafish is an ideal model organism for behavioral genetics and neuroscience. The high conservation of genes and neurotransmitter pathways between zebrafish and other vertebrates permits the translation of research between species. Zebrafish behavior can be studied at both larval and adult stages and recent research has begun to establish zebrafish models for human disease. Fast scan cyclic voltammetry (FSCV) is an electrochemical technique that permits the detection of neurotransmitter release and reuptake. In this study we have used in vitro FSCV to measure the release of analytes in the adult zebrafish telencephalon. We compare different stimulation methods and present a characterization of neurochemical changes in the wild-type zebrafish brain. This study represents the first FSCV recordings in zebrafish, thus paving the way for neurochemical analysis of the fish brain.

No MeSH data available.


Principal component analysis. Principal component analysis (PCA) of data obtained from stimulation of zebrafish telencephalon. (A) Color plot showing current changes resulting from electrical stimulation. (B) Residual color plot showing changes not accounted for by the PCA model. (C) Time vs. concentration plot for dopamine obtained from PCA. (D) Time vs. concentration plot for 5-HT obtained from PCA. (E) Time vs. concentration plot for histamine obtained from PCA. (F) Time vs. pH units plot obtained from PCA. (G) Qt plot showing that data does not exceed the Q threshold of 686681. (H) Application of the model to a cyclic voltammogram representing a combination of 1 μM dopamine, 0.25 μM 5HT, 40 μM histamine and a pH shift of +1.0 unit measured in a flow cell.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4561813&req=5

Figure 8: Principal component analysis. Principal component analysis (PCA) of data obtained from stimulation of zebrafish telencephalon. (A) Color plot showing current changes resulting from electrical stimulation. (B) Residual color plot showing changes not accounted for by the PCA model. (C) Time vs. concentration plot for dopamine obtained from PCA. (D) Time vs. concentration plot for 5-HT obtained from PCA. (E) Time vs. concentration plot for histamine obtained from PCA. (F) Time vs. pH units plot obtained from PCA. (G) Qt plot showing that data does not exceed the Q threshold of 686681. (H) Application of the model to a cyclic voltammogram representing a combination of 1 μM dopamine, 0.25 μM 5HT, 40 μM histamine and a pH shift of +1.0 unit measured in a flow cell.

Mentions: We examined our data using principal component analysis to provide an estimate of actual neurotransmitter concentration in the brain and to determine the relative contribution of each neurotransmitter to the changes in current that we measured (Heien et al., 2005; Keithley and Wightman, 2011). We constructed training sets of voltammograms that included responses to both single neurotransmitters and mixtures of neurotransmitters in the flow cell. Full details of these training sets are provided in Table 1. We used data from electrical stimulation experiments (Figure 8A) for this analysis because recordings using high K+ aCSF did not fit the statistical model well, perhaps due to the prolonged time-course of the changes that can cause the baseline to drift. We obtained the best fit for our electrical stimulation data (i.e., the lowest residual values) when using a training set that included dopamine, 5-HT, histamine and both acidic- and basic pH shifts. The resulting concentration vs. time plots suggest that dopamine (Figure 8C), 5-HT (Figure 8D) and histamine (Figure 8E) are all likely to be present following electrical stimulation. Importantly, the resulting Qt plot did not pass the threshold of 686681 at any point (Figure 8G) suggesting that our training set fits the in vitro data well. The increase of dopamine is ~100 nM, 5-HT ~8.0 nM and the increase of histamine is ~8.0 μM. In addition, it appears that there is also an acidic pH shift of ~0.05 units (Figure 8F). To confirm that our PCA was accurate in its representation of type- and concentration- of analytes, we examined a combination of 0.25 μM 5HT, 1 μM dopamine, 40 μM histamine and an acidic pH shift of +1.0 unit obtained in the flow cell. This provided a highly accurate prediction of the concentration of each species (Figure 8H), suggesting that the training set was indeed appropriate for the main analysis.


Neurochemical measurements in the zebrafish brain.

Jones LJ, McCutcheon JE, Young AM, Norton WH - Front Behav Neurosci (2015)

Principal component analysis. Principal component analysis (PCA) of data obtained from stimulation of zebrafish telencephalon. (A) Color plot showing current changes resulting from electrical stimulation. (B) Residual color plot showing changes not accounted for by the PCA model. (C) Time vs. concentration plot for dopamine obtained from PCA. (D) Time vs. concentration plot for 5-HT obtained from PCA. (E) Time vs. concentration plot for histamine obtained from PCA. (F) Time vs. pH units plot obtained from PCA. (G) Qt plot showing that data does not exceed the Q threshold of 686681. (H) Application of the model to a cyclic voltammogram representing a combination of 1 μM dopamine, 0.25 μM 5HT, 40 μM histamine and a pH shift of +1.0 unit measured in a flow cell.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4561813&req=5

Figure 8: Principal component analysis. Principal component analysis (PCA) of data obtained from stimulation of zebrafish telencephalon. (A) Color plot showing current changes resulting from electrical stimulation. (B) Residual color plot showing changes not accounted for by the PCA model. (C) Time vs. concentration plot for dopamine obtained from PCA. (D) Time vs. concentration plot for 5-HT obtained from PCA. (E) Time vs. concentration plot for histamine obtained from PCA. (F) Time vs. pH units plot obtained from PCA. (G) Qt plot showing that data does not exceed the Q threshold of 686681. (H) Application of the model to a cyclic voltammogram representing a combination of 1 μM dopamine, 0.25 μM 5HT, 40 μM histamine and a pH shift of +1.0 unit measured in a flow cell.
Mentions: We examined our data using principal component analysis to provide an estimate of actual neurotransmitter concentration in the brain and to determine the relative contribution of each neurotransmitter to the changes in current that we measured (Heien et al., 2005; Keithley and Wightman, 2011). We constructed training sets of voltammograms that included responses to both single neurotransmitters and mixtures of neurotransmitters in the flow cell. Full details of these training sets are provided in Table 1. We used data from electrical stimulation experiments (Figure 8A) for this analysis because recordings using high K+ aCSF did not fit the statistical model well, perhaps due to the prolonged time-course of the changes that can cause the baseline to drift. We obtained the best fit for our electrical stimulation data (i.e., the lowest residual values) when using a training set that included dopamine, 5-HT, histamine and both acidic- and basic pH shifts. The resulting concentration vs. time plots suggest that dopamine (Figure 8C), 5-HT (Figure 8D) and histamine (Figure 8E) are all likely to be present following electrical stimulation. Importantly, the resulting Qt plot did not pass the threshold of 686681 at any point (Figure 8G) suggesting that our training set fits the in vitro data well. The increase of dopamine is ~100 nM, 5-HT ~8.0 nM and the increase of histamine is ~8.0 μM. In addition, it appears that there is also an acidic pH shift of ~0.05 units (Figure 8F). To confirm that our PCA was accurate in its representation of type- and concentration- of analytes, we examined a combination of 0.25 μM 5HT, 1 μM dopamine, 40 μM histamine and an acidic pH shift of +1.0 unit obtained in the flow cell. This provided a highly accurate prediction of the concentration of each species (Figure 8H), suggesting that the training set was indeed appropriate for the main analysis.

Bottom Line: In this study we have used in vitro FSCV to measure the release of analytes in the adult zebrafish telencephalon.We compare different stimulation methods and present a characterization of neurochemical changes in the wild-type zebrafish brain.This study represents the first FSCV recordings in zebrafish, thus paving the way for neurochemical analysis of the fish brain.

View Article: PubMed Central - PubMed

Affiliation: Department of Neuroscience, Psychology and Behaviour, University of Leicester Leicester, UK.

ABSTRACT
The zebrafish is an ideal model organism for behavioral genetics and neuroscience. The high conservation of genes and neurotransmitter pathways between zebrafish and other vertebrates permits the translation of research between species. Zebrafish behavior can be studied at both larval and adult stages and recent research has begun to establish zebrafish models for human disease. Fast scan cyclic voltammetry (FSCV) is an electrochemical technique that permits the detection of neurotransmitter release and reuptake. In this study we have used in vitro FSCV to measure the release of analytes in the adult zebrafish telencephalon. We compare different stimulation methods and present a characterization of neurochemical changes in the wild-type zebrafish brain. This study represents the first FSCV recordings in zebrafish, thus paving the way for neurochemical analysis of the fish brain.

No MeSH data available.