Limits...
Non-mammalian models in behavioral neuroscience: consequences for biological psychiatry.

Maximino C, Silva RX, da Silva Sde N, Rodrigues Ldo S, Barbosa H, de Carvalho TS, Leão LK, Lima MG, Oliveira KR, Herculano AM - Front Behav Neurosci (2015)

Bottom Line: However, in the same sense that a comparative approach to neuroanatomy allows for the identification of patterns of brain organization, the inclusion of other species and an adoption of comparative viewpoints in behavioral neuroscience could also lead to increases in knowledge relevant to biological psychiatry.To achieve this goal, the current focus on mammalian species must be expanded to include other species, including non-mammalian taxa.In this article, we review behavioral neuroscientific experiments in non-mammalian species, including traditional "model organisms" (zebrafish and Drosophila) as well as in other species which can be used as "reference." The application of these domains in biological psychiatry and their translational relevance is considered.

View Article: PubMed Central - PubMed

Affiliation: Laboratório de Neurociências e Comportamento, Departamento de Morfologia e Ciências Fisiológicas, Campus VIII - Marabá, Universidade do Estado do Pará Marabá, Brazil.

ABSTRACT
Current models in biological psychiatry focus on a handful of model species, and the majority of work relies on data generated in rodents. However, in the same sense that a comparative approach to neuroanatomy allows for the identification of patterns of brain organization, the inclusion of other species and an adoption of comparative viewpoints in behavioral neuroscience could also lead to increases in knowledge relevant to biological psychiatry. Specifically, this approach could help to identify conserved features of brain structure and behavior, as well as to understand how variation in gene expression or developmental trajectories relates to variation in brain and behavior pertinent to psychiatric disorders. To achieve this goal, the current focus on mammalian species must be expanded to include other species, including non-mammalian taxa. In this article, we review behavioral neuroscientific experiments in non-mammalian species, including traditional "model organisms" (zebrafish and Drosophila) as well as in other species which can be used as "reference." The application of these domains in biological psychiatry and their translational relevance is considered.

No MeSH data available.


Related in: MedlinePlus

Apparent paradox in the divergence and conservation of monaminergic systems in mammals, fish, and insects. Receptor and enzyme sequences are not conserved (including gene duplication in the case of teleost fish), and the brain nuclei containing monoaminergic neurons are differently distributed throughout the brain in mammals, fish, and insects, but functions appear to be relatively well-conserved.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4561806&req=5

Figure 3: Apparent paradox in the divergence and conservation of monaminergic systems in mammals, fish, and insects. Receptor and enzyme sequences are not conserved (including gene duplication in the case of teleost fish), and the brain nuclei containing monoaminergic neurons are differently distributed throughout the brain in mammals, fish, and insects, but functions appear to be relatively well-conserved.

Mentions: The exclusive reliance of behavioral neurosciences on a small number of species is counterproductive; as a result, different research groups are starting to focus their efforts on a comparative perspective, using non-mammalian organisms in research. As can be inferred from this Review, the most readily transferable models using non-mammalian species are in the domains of anxiety, impulse control and aggression. While our knowledge of the neurobehavioral systems involved in disorders in these domains is far from complete, mammalian data suggests that a number of neurotransmitter and neuromodulator systems are dysfunctional in these pathologies (Figure 3). In Tables 1–3 and throughout this Review, the degree of conservation in these systems has been discussed. In some cases, a seemingly paradoxical situation is seen, in which the neurotransmitter system is not fully conserved from the molecular point of view, but from a functional perspective the degree of conservation is higher (Figure 3). While this state of affairs can simply represent the current limitations in the tools used to address these questions, it is possible that they represent discontinuities in the evolutionary histories of these traits. Future research—especially of the comparative kind—will answer these open questions.


Non-mammalian models in behavioral neuroscience: consequences for biological psychiatry.

Maximino C, Silva RX, da Silva Sde N, Rodrigues Ldo S, Barbosa H, de Carvalho TS, Leão LK, Lima MG, Oliveira KR, Herculano AM - Front Behav Neurosci (2015)

Apparent paradox in the divergence and conservation of monaminergic systems in mammals, fish, and insects. Receptor and enzyme sequences are not conserved (including gene duplication in the case of teleost fish), and the brain nuclei containing monoaminergic neurons are differently distributed throughout the brain in mammals, fish, and insects, but functions appear to be relatively well-conserved.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4561806&req=5

Figure 3: Apparent paradox in the divergence and conservation of monaminergic systems in mammals, fish, and insects. Receptor and enzyme sequences are not conserved (including gene duplication in the case of teleost fish), and the brain nuclei containing monoaminergic neurons are differently distributed throughout the brain in mammals, fish, and insects, but functions appear to be relatively well-conserved.
Mentions: The exclusive reliance of behavioral neurosciences on a small number of species is counterproductive; as a result, different research groups are starting to focus their efforts on a comparative perspective, using non-mammalian organisms in research. As can be inferred from this Review, the most readily transferable models using non-mammalian species are in the domains of anxiety, impulse control and aggression. While our knowledge of the neurobehavioral systems involved in disorders in these domains is far from complete, mammalian data suggests that a number of neurotransmitter and neuromodulator systems are dysfunctional in these pathologies (Figure 3). In Tables 1–3 and throughout this Review, the degree of conservation in these systems has been discussed. In some cases, a seemingly paradoxical situation is seen, in which the neurotransmitter system is not fully conserved from the molecular point of view, but from a functional perspective the degree of conservation is higher (Figure 3). While this state of affairs can simply represent the current limitations in the tools used to address these questions, it is possible that they represent discontinuities in the evolutionary histories of these traits. Future research—especially of the comparative kind—will answer these open questions.

Bottom Line: However, in the same sense that a comparative approach to neuroanatomy allows for the identification of patterns of brain organization, the inclusion of other species and an adoption of comparative viewpoints in behavioral neuroscience could also lead to increases in knowledge relevant to biological psychiatry.To achieve this goal, the current focus on mammalian species must be expanded to include other species, including non-mammalian taxa.In this article, we review behavioral neuroscientific experiments in non-mammalian species, including traditional "model organisms" (zebrafish and Drosophila) as well as in other species which can be used as "reference." The application of these domains in biological psychiatry and their translational relevance is considered.

View Article: PubMed Central - PubMed

Affiliation: Laboratório de Neurociências e Comportamento, Departamento de Morfologia e Ciências Fisiológicas, Campus VIII - Marabá, Universidade do Estado do Pará Marabá, Brazil.

ABSTRACT
Current models in biological psychiatry focus on a handful of model species, and the majority of work relies on data generated in rodents. However, in the same sense that a comparative approach to neuroanatomy allows for the identification of patterns of brain organization, the inclusion of other species and an adoption of comparative viewpoints in behavioral neuroscience could also lead to increases in knowledge relevant to biological psychiatry. Specifically, this approach could help to identify conserved features of brain structure and behavior, as well as to understand how variation in gene expression or developmental trajectories relates to variation in brain and behavior pertinent to psychiatric disorders. To achieve this goal, the current focus on mammalian species must be expanded to include other species, including non-mammalian taxa. In this article, we review behavioral neuroscientific experiments in non-mammalian species, including traditional "model organisms" (zebrafish and Drosophila) as well as in other species which can be used as "reference." The application of these domains in biological psychiatry and their translational relevance is considered.

No MeSH data available.


Related in: MedlinePlus