Limits...
Non-mammalian models in behavioral neuroscience: consequences for biological psychiatry.

Maximino C, Silva RX, da Silva Sde N, Rodrigues Ldo S, Barbosa H, de Carvalho TS, Leão LK, Lima MG, Oliveira KR, Herculano AM - Front Behav Neurosci (2015)

Bottom Line: However, in the same sense that a comparative approach to neuroanatomy allows for the identification of patterns of brain organization, the inclusion of other species and an adoption of comparative viewpoints in behavioral neuroscience could also lead to increases in knowledge relevant to biological psychiatry.To achieve this goal, the current focus on mammalian species must be expanded to include other species, including non-mammalian taxa.In this article, we review behavioral neuroscientific experiments in non-mammalian species, including traditional "model organisms" (zebrafish and Drosophila) as well as in other species which can be used as "reference." The application of these domains in biological psychiatry and their translational relevance is considered.

View Article: PubMed Central - PubMed

Affiliation: Laboratório de Neurociências e Comportamento, Departamento de Morfologia e Ciências Fisiológicas, Campus VIII - Marabá, Universidade do Estado do Pará Marabá, Brazil.

ABSTRACT
Current models in biological psychiatry focus on a handful of model species, and the majority of work relies on data generated in rodents. However, in the same sense that a comparative approach to neuroanatomy allows for the identification of patterns of brain organization, the inclusion of other species and an adoption of comparative viewpoints in behavioral neuroscience could also lead to increases in knowledge relevant to biological psychiatry. Specifically, this approach could help to identify conserved features of brain structure and behavior, as well as to understand how variation in gene expression or developmental trajectories relates to variation in brain and behavior pertinent to psychiatric disorders. To achieve this goal, the current focus on mammalian species must be expanded to include other species, including non-mammalian taxa. In this article, we review behavioral neuroscientific experiments in non-mammalian species, including traditional "model organisms" (zebrafish and Drosophila) as well as in other species which can be used as "reference." The application of these domains in biological psychiatry and their translational relevance is considered.

No MeSH data available.


Related in: MedlinePlus

Phylogenetic context of some “reference species” that can be used in behavioral neurosciences. The figure underlines the position and phylogenetic distances of a few species in relation to each other, and suggest how this information can be used to inform the selection of organisms for research. For example, while most research in the behavioral neurosciences is performed using rodents, selecting a species from an outgroup—for example, chicks or lizards—could inform researchers on evolutionary conservation of biobehavioral traits in mammals. These informations complement the usual criteria for species choice (ease of reproduction, rapid generation time, etc.) and the availability of behavioral and physiological assays.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4561806&req=5

Figure 1: Phylogenetic context of some “reference species” that can be used in behavioral neurosciences. The figure underlines the position and phylogenetic distances of a few species in relation to each other, and suggest how this information can be used to inform the selection of organisms for research. For example, while most research in the behavioral neurosciences is performed using rodents, selecting a species from an outgroup—for example, chicks or lizards—could inform researchers on evolutionary conservation of biobehavioral traits in mammals. These informations complement the usual criteria for species choice (ease of reproduction, rapid generation time, etc.) and the availability of behavioral and physiological assays.

Mentions: While the authors' focus was comparative and evolutionary neuroanatomy, their conclusions and recommendations can be extended to behavioral neuroscience insofar as both areas can profit from comparing taxa to infer how variations in one domain (gene expression, connectivity, activation patterns) relates to variation in behavior (Engert, 2014; Mitra, 2014; Striedter et al., 2014). Striedter et al. (2014) suggest that well-established model organisms be included among these species due to the availability of resources for their study, but point that other reference species should also be selected based on a few criteria. Thus, reference species are not “models for some other species, but […] a basis for comparisons that may reveal both similarities and differences” (Striedter et al., 2014, p. 5) The criteria for choosing a reference species are not established a priori, but might include phylogenetic position (Figure 1) and accumulation of significant data and methodological developments (Hale, 2014; Striedter et al., 2014); the ultimate goal is to allow the emergence of a comprehensive understanding of specific behavioral functions in different species and its specific relationships to brain structure and activity (Striedter et al., 2014; Hale, 2014).


Non-mammalian models in behavioral neuroscience: consequences for biological psychiatry.

Maximino C, Silva RX, da Silva Sde N, Rodrigues Ldo S, Barbosa H, de Carvalho TS, Leão LK, Lima MG, Oliveira KR, Herculano AM - Front Behav Neurosci (2015)

Phylogenetic context of some “reference species” that can be used in behavioral neurosciences. The figure underlines the position and phylogenetic distances of a few species in relation to each other, and suggest how this information can be used to inform the selection of organisms for research. For example, while most research in the behavioral neurosciences is performed using rodents, selecting a species from an outgroup—for example, chicks or lizards—could inform researchers on evolutionary conservation of biobehavioral traits in mammals. These informations complement the usual criteria for species choice (ease of reproduction, rapid generation time, etc.) and the availability of behavioral and physiological assays.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4561806&req=5

Figure 1: Phylogenetic context of some “reference species” that can be used in behavioral neurosciences. The figure underlines the position and phylogenetic distances of a few species in relation to each other, and suggest how this information can be used to inform the selection of organisms for research. For example, while most research in the behavioral neurosciences is performed using rodents, selecting a species from an outgroup—for example, chicks or lizards—could inform researchers on evolutionary conservation of biobehavioral traits in mammals. These informations complement the usual criteria for species choice (ease of reproduction, rapid generation time, etc.) and the availability of behavioral and physiological assays.
Mentions: While the authors' focus was comparative and evolutionary neuroanatomy, their conclusions and recommendations can be extended to behavioral neuroscience insofar as both areas can profit from comparing taxa to infer how variations in one domain (gene expression, connectivity, activation patterns) relates to variation in behavior (Engert, 2014; Mitra, 2014; Striedter et al., 2014). Striedter et al. (2014) suggest that well-established model organisms be included among these species due to the availability of resources for their study, but point that other reference species should also be selected based on a few criteria. Thus, reference species are not “models for some other species, but […] a basis for comparisons that may reveal both similarities and differences” (Striedter et al., 2014, p. 5) The criteria for choosing a reference species are not established a priori, but might include phylogenetic position (Figure 1) and accumulation of significant data and methodological developments (Hale, 2014; Striedter et al., 2014); the ultimate goal is to allow the emergence of a comprehensive understanding of specific behavioral functions in different species and its specific relationships to brain structure and activity (Striedter et al., 2014; Hale, 2014).

Bottom Line: However, in the same sense that a comparative approach to neuroanatomy allows for the identification of patterns of brain organization, the inclusion of other species and an adoption of comparative viewpoints in behavioral neuroscience could also lead to increases in knowledge relevant to biological psychiatry.To achieve this goal, the current focus on mammalian species must be expanded to include other species, including non-mammalian taxa.In this article, we review behavioral neuroscientific experiments in non-mammalian species, including traditional "model organisms" (zebrafish and Drosophila) as well as in other species which can be used as "reference." The application of these domains in biological psychiatry and their translational relevance is considered.

View Article: PubMed Central - PubMed

Affiliation: Laboratório de Neurociências e Comportamento, Departamento de Morfologia e Ciências Fisiológicas, Campus VIII - Marabá, Universidade do Estado do Pará Marabá, Brazil.

ABSTRACT
Current models in biological psychiatry focus on a handful of model species, and the majority of work relies on data generated in rodents. However, in the same sense that a comparative approach to neuroanatomy allows for the identification of patterns of brain organization, the inclusion of other species and an adoption of comparative viewpoints in behavioral neuroscience could also lead to increases in knowledge relevant to biological psychiatry. Specifically, this approach could help to identify conserved features of brain structure and behavior, as well as to understand how variation in gene expression or developmental trajectories relates to variation in brain and behavior pertinent to psychiatric disorders. To achieve this goal, the current focus on mammalian species must be expanded to include other species, including non-mammalian taxa. In this article, we review behavioral neuroscientific experiments in non-mammalian species, including traditional "model organisms" (zebrafish and Drosophila) as well as in other species which can be used as "reference." The application of these domains in biological psychiatry and their translational relevance is considered.

No MeSH data available.


Related in: MedlinePlus