Limits...
Effects of social sustainability signaling on neural valuation signals and taste-experience of food products.

Enax L, Krapp V, Piehl A, Weber B - Front Behav Neurosci (2015)

Bottom Line: We also found a significant taste-placebo effect, with higher experienced taste pleasantness and intensity for FT labeled chocolates.Our results reveal a possible neural mechanism underlying valuation processes of certified food products.The results are important in light of understanding current marketing trends as well as designing future interventions that aim at positively influencing food choice.

View Article: PubMed Central - PubMed

Affiliation: Department of Epileptology, University Hospital Bonn Bonn, Germany ; Department of NeuroCognition/Imaging, Life and Brain Center Bonn, Germany ; Center for Economics and Neuroscience, University of Bonn Bonn, Germany.

ABSTRACT
Value-based decision making occurs when individuals choose between different alternatives and place a value on each alternative and its attributes. Marketing actions frequently manipulate product attributes, by adding, e.g., health claims on the packaging. A previous imaging study found that an emblem for organic products increased willingness to pay (WTP) and activity in the ventral striatum (VS). The current study investigated neural and behavioral processes underlying the influence of Fair Trade (FT) labeling on food valuation and choice. Sustainability is an important product attribute for many consumers, with FT signals being one way to highlight ethically sustainable production. Forty participants valuated products in combination with an FT emblem or no emblem and stated their WTP in a bidding task while in an MRI scanner. After that, participants tasted-objectively identical-chocolates, presented either as "FT" or as "conventionally produced". In the fMRI task, WTP was significantly higher for FT products. FT labeling increased activity in regions important for reward-processing and salience, that is, in the VS, anterior and posterior cingulate, as well as superior frontal gyrus. Subjective value, that is, WTP was correlated with activity in the ventromedial prefrontal cortex (vmPFC). We find that the anterior cingulate, VS and superior frontal gyrus exhibit task-related increases in functional connectivity to the vmPFC when an FT product was evaluated. Effective connectivity analyses revealed a highly probable directed modulation of the vmPFC by those three regions, suggesting a network which alters valuation processes. We also found a significant taste-placebo effect, with higher experienced taste pleasantness and intensity for FT labeled chocolates. Our results reveal a possible neural mechanism underlying valuation processes of certified food products. The results are important in light of understanding current marketing trends as well as designing future interventions that aim at positively influencing food choice.

No MeSH data available.


Related in: MedlinePlus

Ventral striatal subregions responding value-independently and value-dependently. In the ventral striatum, voxels that are active in response to the FT product (that may be due to salience or general responses to an FT label) are distinct from value-dependent voxels that correlate with the increment value of the FT product. In green, voxels are depicted that are activated in response to the FT vs. conventional product (GLM 1). The red voxels depict the activation in response to the FT product over and above what is already explained by WTP (GLM 2). The blue voxels correlate with the increment value of the FT product at the time of FT product presentation (GLM 3). In sum, a broader and more lateral part of the striatum is activated value-independently (GLM 2, green), and a smaller and more medial and ventral part is activated value-dependently (GLM 3, blue). Data are shown using MRIcroGL (MNI template) and in radiological convention.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4561672&req=5

Figure 5: Ventral striatal subregions responding value-independently and value-dependently. In the ventral striatum, voxels that are active in response to the FT product (that may be due to salience or general responses to an FT label) are distinct from value-dependent voxels that correlate with the increment value of the FT product. In green, voxels are depicted that are activated in response to the FT vs. conventional product (GLM 1). The red voxels depict the activation in response to the FT product over and above what is already explained by WTP (GLM 2). The blue voxels correlate with the increment value of the FT product at the time of FT product presentation (GLM 3). In sum, a broader and more lateral part of the striatum is activated value-independently (GLM 2, green), and a smaller and more medial and ventral part is activated value-dependently (GLM 3, blue). Data are shown using MRIcroGL (MNI template) and in radiological convention.

Mentions: Last, we correlated the increment value i, that is, the individual difference between an FT and the same conventional product, with the onset of all FT products in GLM 3. Both the vmPFC and the VS correlate with the increment value i (p < 0.05, SV FWE corrected) at the time of FT product presentation, see Table 3 and Figure 4 to see the overlap in vmPFC activity for correlations with WTP and increment value i. Importantly, the VS, voxels that correlate with i are distinct from those that are active in response to the label (GLM 1 and 2), see Figure 5.


Effects of social sustainability signaling on neural valuation signals and taste-experience of food products.

Enax L, Krapp V, Piehl A, Weber B - Front Behav Neurosci (2015)

Ventral striatal subregions responding value-independently and value-dependently. In the ventral striatum, voxels that are active in response to the FT product (that may be due to salience or general responses to an FT label) are distinct from value-dependent voxels that correlate with the increment value of the FT product. In green, voxels are depicted that are activated in response to the FT vs. conventional product (GLM 1). The red voxels depict the activation in response to the FT product over and above what is already explained by WTP (GLM 2). The blue voxels correlate with the increment value of the FT product at the time of FT product presentation (GLM 3). In sum, a broader and more lateral part of the striatum is activated value-independently (GLM 2, green), and a smaller and more medial and ventral part is activated value-dependently (GLM 3, blue). Data are shown using MRIcroGL (MNI template) and in radiological convention.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4561672&req=5

Figure 5: Ventral striatal subregions responding value-independently and value-dependently. In the ventral striatum, voxels that are active in response to the FT product (that may be due to salience or general responses to an FT label) are distinct from value-dependent voxels that correlate with the increment value of the FT product. In green, voxels are depicted that are activated in response to the FT vs. conventional product (GLM 1). The red voxels depict the activation in response to the FT product over and above what is already explained by WTP (GLM 2). The blue voxels correlate with the increment value of the FT product at the time of FT product presentation (GLM 3). In sum, a broader and more lateral part of the striatum is activated value-independently (GLM 2, green), and a smaller and more medial and ventral part is activated value-dependently (GLM 3, blue). Data are shown using MRIcroGL (MNI template) and in radiological convention.
Mentions: Last, we correlated the increment value i, that is, the individual difference between an FT and the same conventional product, with the onset of all FT products in GLM 3. Both the vmPFC and the VS correlate with the increment value i (p < 0.05, SV FWE corrected) at the time of FT product presentation, see Table 3 and Figure 4 to see the overlap in vmPFC activity for correlations with WTP and increment value i. Importantly, the VS, voxels that correlate with i are distinct from those that are active in response to the label (GLM 1 and 2), see Figure 5.

Bottom Line: We also found a significant taste-placebo effect, with higher experienced taste pleasantness and intensity for FT labeled chocolates.Our results reveal a possible neural mechanism underlying valuation processes of certified food products.The results are important in light of understanding current marketing trends as well as designing future interventions that aim at positively influencing food choice.

View Article: PubMed Central - PubMed

Affiliation: Department of Epileptology, University Hospital Bonn Bonn, Germany ; Department of NeuroCognition/Imaging, Life and Brain Center Bonn, Germany ; Center for Economics and Neuroscience, University of Bonn Bonn, Germany.

ABSTRACT
Value-based decision making occurs when individuals choose between different alternatives and place a value on each alternative and its attributes. Marketing actions frequently manipulate product attributes, by adding, e.g., health claims on the packaging. A previous imaging study found that an emblem for organic products increased willingness to pay (WTP) and activity in the ventral striatum (VS). The current study investigated neural and behavioral processes underlying the influence of Fair Trade (FT) labeling on food valuation and choice. Sustainability is an important product attribute for many consumers, with FT signals being one way to highlight ethically sustainable production. Forty participants valuated products in combination with an FT emblem or no emblem and stated their WTP in a bidding task while in an MRI scanner. After that, participants tasted-objectively identical-chocolates, presented either as "FT" or as "conventionally produced". In the fMRI task, WTP was significantly higher for FT products. FT labeling increased activity in regions important for reward-processing and salience, that is, in the VS, anterior and posterior cingulate, as well as superior frontal gyrus. Subjective value, that is, WTP was correlated with activity in the ventromedial prefrontal cortex (vmPFC). We find that the anterior cingulate, VS and superior frontal gyrus exhibit task-related increases in functional connectivity to the vmPFC when an FT product was evaluated. Effective connectivity analyses revealed a highly probable directed modulation of the vmPFC by those three regions, suggesting a network which alters valuation processes. We also found a significant taste-placebo effect, with higher experienced taste pleasantness and intensity for FT labeled chocolates. Our results reveal a possible neural mechanism underlying valuation processes of certified food products. The results are important in light of understanding current marketing trends as well as designing future interventions that aim at positively influencing food choice.

No MeSH data available.


Related in: MedlinePlus