Limits...
High-Resolution X-Ray Techniques as New Tool to Investigate the 3D Vascularization of Engineered-Bone Tissue.

Bukreeva I, Fratini M, Campi G, Pelliccia D, Spanò R, Tromba G, Brun F, Burghammer M, Grilli M, Cancedda R, Cedola A, Mastrogiacomo M - Front Bioeng Biotechnol (2015)

Bottom Line: We compared samples seeded and not seeded with BMSC, as well as samples differently stained or unstained.Thanks to the high quality of the images, we investigated the 3D distribution of both vessels and collagen matrix and we obtained quantitative information for all different samples.We propose our approach as a tool for quantitative studies of angiogenesis in TE and for any pre-clinical investigation where a quantitative analysis of the vascular network is required.

View Article: PubMed Central - PubMed

Affiliation: Consiglio Nazionale delle Ricerche - Istituto NANOTEC, c/o Dipartimento di Fisica, Università Sapienza , Rome , Italy.

ABSTRACT
The understanding of structure-function relationships in normal and pathologic mammalian tissues is at the basis of a tissue engineering (TE) approach for the development of biological substitutes to restore or improve tissue function. In this framework, it is interesting to investigate engineered bone tissue, formed when porous ceramic constructs are loaded with bone marrow stromal cells (BMSC) and implanted in vivo. To monitor the relation between bone formation and vascularization, it is important to achieve a detailed imaging and a quantitative description of the complete three-dimensional vascular network in such constructs. Here, we used synchrotron X-ray phase-contrast micro-tomography to visualize and analyze the three-dimensional micro-vascular networks in bone-engineered constructs, in an ectopic bone formation mouse-model. We compared samples seeded and not seeded with BMSC, as well as samples differently stained or unstained. Thanks to the high quality of the images, we investigated the 3D distribution of both vessels and collagen matrix and we obtained quantitative information for all different samples. We propose our approach as a tool for quantitative studies of angiogenesis in TE and for any pre-clinical investigation where a quantitative analysis of the vascular network is required.

No MeSH data available.


Related in: MedlinePlus

(A) Pictorial view of the experimental configurations used for XRPCμT measurements. The in-line, or propagation based, phase-contrast experimental setup, installed at the SLS synchrotron at PSI in Switzerland. (B) The table summarizes the characteristics of the different investigated samples.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4561513&req=5

Figure 1: (A) Pictorial view of the experimental configurations used for XRPCμT measurements. The in-line, or propagation based, phase-contrast experimental setup, installed at the SLS synchrotron at PSI in Switzerland. (B) The table summarizes the characteristics of the different investigated samples.

Mentions: All in vivo experiments were performed in triplicate, but only one sample for each group was XRPCμT analyzed. As control, one group of scaffolds was implanted without sheep BMSC pre-seeding. Four groups of mice were analyzed as reported in Table I in Figure 1B: (A) no BMSC pre-seeding and perfusion with MICROFIL®; (B) BMSC pre-seeding and perfusion with MICROFIL®, a low-viscosity radio opaque polymer (Flowtech, Inc., Carver, Massachusetts) well suited for vascularization studies; (C) BMSC pre-seeding and staining with PTA (PTA solution, Sigma-Aldrich Corp., St. Louis, MO, USA); (D) BMSC pre-seeding and perfusion with saline.


High-Resolution X-Ray Techniques as New Tool to Investigate the 3D Vascularization of Engineered-Bone Tissue.

Bukreeva I, Fratini M, Campi G, Pelliccia D, Spanò R, Tromba G, Brun F, Burghammer M, Grilli M, Cancedda R, Cedola A, Mastrogiacomo M - Front Bioeng Biotechnol (2015)

(A) Pictorial view of the experimental configurations used for XRPCμT measurements. The in-line, or propagation based, phase-contrast experimental setup, installed at the SLS synchrotron at PSI in Switzerland. (B) The table summarizes the characteristics of the different investigated samples.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4561513&req=5

Figure 1: (A) Pictorial view of the experimental configurations used for XRPCμT measurements. The in-line, or propagation based, phase-contrast experimental setup, installed at the SLS synchrotron at PSI in Switzerland. (B) The table summarizes the characteristics of the different investigated samples.
Mentions: All in vivo experiments were performed in triplicate, but only one sample for each group was XRPCμT analyzed. As control, one group of scaffolds was implanted without sheep BMSC pre-seeding. Four groups of mice were analyzed as reported in Table I in Figure 1B: (A) no BMSC pre-seeding and perfusion with MICROFIL®; (B) BMSC pre-seeding and perfusion with MICROFIL®, a low-viscosity radio opaque polymer (Flowtech, Inc., Carver, Massachusetts) well suited for vascularization studies; (C) BMSC pre-seeding and staining with PTA (PTA solution, Sigma-Aldrich Corp., St. Louis, MO, USA); (D) BMSC pre-seeding and perfusion with saline.

Bottom Line: We compared samples seeded and not seeded with BMSC, as well as samples differently stained or unstained.Thanks to the high quality of the images, we investigated the 3D distribution of both vessels and collagen matrix and we obtained quantitative information for all different samples.We propose our approach as a tool for quantitative studies of angiogenesis in TE and for any pre-clinical investigation where a quantitative analysis of the vascular network is required.

View Article: PubMed Central - PubMed

Affiliation: Consiglio Nazionale delle Ricerche - Istituto NANOTEC, c/o Dipartimento di Fisica, Università Sapienza , Rome , Italy.

ABSTRACT
The understanding of structure-function relationships in normal and pathologic mammalian tissues is at the basis of a tissue engineering (TE) approach for the development of biological substitutes to restore or improve tissue function. In this framework, it is interesting to investigate engineered bone tissue, formed when porous ceramic constructs are loaded with bone marrow stromal cells (BMSC) and implanted in vivo. To monitor the relation between bone formation and vascularization, it is important to achieve a detailed imaging and a quantitative description of the complete three-dimensional vascular network in such constructs. Here, we used synchrotron X-ray phase-contrast micro-tomography to visualize and analyze the three-dimensional micro-vascular networks in bone-engineered constructs, in an ectopic bone formation mouse-model. We compared samples seeded and not seeded with BMSC, as well as samples differently stained or unstained. Thanks to the high quality of the images, we investigated the 3D distribution of both vessels and collagen matrix and we obtained quantitative information for all different samples. We propose our approach as a tool for quantitative studies of angiogenesis in TE and for any pre-clinical investigation where a quantitative analysis of the vascular network is required.

No MeSH data available.


Related in: MedlinePlus