Limits...
KneeTex: an ontology-driven system for information extraction from MRI reports.

Spasić I, Zhao B, Jones CB, Button K - J Biomed Semantics (2015)

Bottom Line: Therefore, clinical narratives found in MRI reports convey valuable diagnostic information.Information extraction results were evaluated on a test set of 100 MRI reports.As a result, formally structured and coded information allows for complex searches to be conducted efficiently over the original MRI reports, thereby effectively supporting epidemiologic studies of knee conditions.

View Article: PubMed Central - PubMed

Affiliation: School of Computer Science & Informatics, Cardiff University, Cardiff, CF24 3AA UK.

ABSTRACT

Background: In the realm of knee pathology, magnetic resonance imaging (MRI) has the advantage of visualising all structures within the knee joint, which makes it a valuable tool for increasing diagnostic accuracy and planning surgical treatments. Therefore, clinical narratives found in MRI reports convey valuable diagnostic information. A range of studies have proven the feasibility of natural language processing for information extraction from clinical narratives. However, no study focused specifically on MRI reports in relation to knee pathology, possibly due to the complexity of knee anatomy and a wide range of conditions that may be associated with different anatomical entities. In this paper we describe KneeTex, an information extraction system that operates in this domain.

Methods: As an ontology-driven information extraction system, KneeTex makes active use of an ontology to strongly guide and constrain text analysis. We used automatic term recognition to facilitate the development of a domain-specific ontology with sufficient detail and coverage for text mining applications. In combination with the ontology, high regularity of the sublanguage used in knee MRI reports allowed us to model its processing by a set of sophisticated lexico-semantic rules with minimal syntactic analysis. The main processing steps involve named entity recognition combined with coordination, enumeration, ambiguity and co-reference resolution, followed by text segmentation. Ontology-based semantic typing is then used to drive the template filling process.

Results: We adopted an existing ontology, TRAK (Taxonomy for RehAbilitation of Knee conditions), for use within KneeTex. The original TRAK ontology expanded from 1,292 concepts, 1,720 synonyms and 518 relationship instances to 1,621 concepts, 2,550 synonyms and 560 relationship instances. This provided KneeTex with a very fine-grained lexico-semantic knowledge base, which is highly attuned to the given sublanguage. Information extraction results were evaluated on a test set of 100 MRI reports. A gold standard consisted of 1,259 filled template records with the following slots: finding, finding qualifier, negation, certainty, anatomy and anatomy qualifier. KneeTex extracted information with precision of 98.00 %, recall of 97.63 % and F-measure of 97.81 %, the values of which are in line with human-like performance.

Conclusions: KneeTex is an open-source, stand-alone application for information extraction from narrative reports that describe an MRI scan of the knee. Given an MRI report as input, the system outputs the corresponding clinical findings in the form of JavaScript Object Notation objects. The extracted information is mapped onto TRAK, an ontology that formally models knowledge relevant for the rehabilitation of knee conditions. As a result, formally structured and coded information allows for complex searches to be conducted efficiently over the original MRI reports, thereby effectively supporting epidemiologic studies of knee conditions.

No MeSH data available.


Related in: MedlinePlus

RadLex terminology related to descriptions of radiology findings. BioPortal was used to access relevant terminology
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC4561435&req=5

Fig7: RadLex terminology related to descriptions of radiology findings. BioPortal was used to access relevant terminology

Mentions: The second source, RadLex, was identified through BioPortal, the most comprehensive repository of biomedical ontologies [47]. MRI is a technique used in radiology, a medical specialty whose concepts are formally described in the Radiology Lexicon (RadLex) – a controlled terminology designed as a single unified source of terms for radiology practice, education and research in an attempt to fill in the gaps in other medical terminology systems [48]. RadLex is currently not distributed as a part of the UMLS. A study conducted on a corpus of 800 radiology reports that represented a mixture of imaging modalities including MRI revealed that out of 11,962 mentioned terms found in RadLex, 3,310 terms (i.e. almost 28 %) could not be found in the UMLS [49]. These facts imply that much of the RadLex terminology would not be identified by MetaMap, used previously to identify UMLS terms. We systematically explored RadLex using its distribution via BioPortal [36]. In particular, we focused on the RadLex descriptor branch of the RadLex hierarchy (see Fig. 7), whose leaf node children are mainly adjectives (rather than noun phrases, which is customary for terms) that can be used to describe radiology findings by specifying their qualifiers (e.g. lobulated would be a qualifier of a cyst). We considered a total of 41 subclasses out of which 13 were relevant for MRI reports (these classes are indicated with an asterisk in Fig. 7). These subclasses were used not only as the source of potential terms for TRAK, but also to provide a structure for incorporating such terms into TRAK. As the end result, a total of 167 terms were cross-referenced to RadLex. The RadLex descriptor class has been renamed to finding descriptor and embedded into TRAK as a subclass of quality.Fig. 7


KneeTex: an ontology-driven system for information extraction from MRI reports.

Spasić I, Zhao B, Jones CB, Button K - J Biomed Semantics (2015)

RadLex terminology related to descriptions of radiology findings. BioPortal was used to access relevant terminology
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC4561435&req=5

Fig7: RadLex terminology related to descriptions of radiology findings. BioPortal was used to access relevant terminology
Mentions: The second source, RadLex, was identified through BioPortal, the most comprehensive repository of biomedical ontologies [47]. MRI is a technique used in radiology, a medical specialty whose concepts are formally described in the Radiology Lexicon (RadLex) – a controlled terminology designed as a single unified source of terms for radiology practice, education and research in an attempt to fill in the gaps in other medical terminology systems [48]. RadLex is currently not distributed as a part of the UMLS. A study conducted on a corpus of 800 radiology reports that represented a mixture of imaging modalities including MRI revealed that out of 11,962 mentioned terms found in RadLex, 3,310 terms (i.e. almost 28 %) could not be found in the UMLS [49]. These facts imply that much of the RadLex terminology would not be identified by MetaMap, used previously to identify UMLS terms. We systematically explored RadLex using its distribution via BioPortal [36]. In particular, we focused on the RadLex descriptor branch of the RadLex hierarchy (see Fig. 7), whose leaf node children are mainly adjectives (rather than noun phrases, which is customary for terms) that can be used to describe radiology findings by specifying their qualifiers (e.g. lobulated would be a qualifier of a cyst). We considered a total of 41 subclasses out of which 13 were relevant for MRI reports (these classes are indicated with an asterisk in Fig. 7). These subclasses were used not only as the source of potential terms for TRAK, but also to provide a structure for incorporating such terms into TRAK. As the end result, a total of 167 terms were cross-referenced to RadLex. The RadLex descriptor class has been renamed to finding descriptor and embedded into TRAK as a subclass of quality.Fig. 7

Bottom Line: Therefore, clinical narratives found in MRI reports convey valuable diagnostic information.Information extraction results were evaluated on a test set of 100 MRI reports.As a result, formally structured and coded information allows for complex searches to be conducted efficiently over the original MRI reports, thereby effectively supporting epidemiologic studies of knee conditions.

View Article: PubMed Central - PubMed

Affiliation: School of Computer Science & Informatics, Cardiff University, Cardiff, CF24 3AA UK.

ABSTRACT

Background: In the realm of knee pathology, magnetic resonance imaging (MRI) has the advantage of visualising all structures within the knee joint, which makes it a valuable tool for increasing diagnostic accuracy and planning surgical treatments. Therefore, clinical narratives found in MRI reports convey valuable diagnostic information. A range of studies have proven the feasibility of natural language processing for information extraction from clinical narratives. However, no study focused specifically on MRI reports in relation to knee pathology, possibly due to the complexity of knee anatomy and a wide range of conditions that may be associated with different anatomical entities. In this paper we describe KneeTex, an information extraction system that operates in this domain.

Methods: As an ontology-driven information extraction system, KneeTex makes active use of an ontology to strongly guide and constrain text analysis. We used automatic term recognition to facilitate the development of a domain-specific ontology with sufficient detail and coverage for text mining applications. In combination with the ontology, high regularity of the sublanguage used in knee MRI reports allowed us to model its processing by a set of sophisticated lexico-semantic rules with minimal syntactic analysis. The main processing steps involve named entity recognition combined with coordination, enumeration, ambiguity and co-reference resolution, followed by text segmentation. Ontology-based semantic typing is then used to drive the template filling process.

Results: We adopted an existing ontology, TRAK (Taxonomy for RehAbilitation of Knee conditions), for use within KneeTex. The original TRAK ontology expanded from 1,292 concepts, 1,720 synonyms and 518 relationship instances to 1,621 concepts, 2,550 synonyms and 560 relationship instances. This provided KneeTex with a very fine-grained lexico-semantic knowledge base, which is highly attuned to the given sublanguage. Information extraction results were evaluated on a test set of 100 MRI reports. A gold standard consisted of 1,259 filled template records with the following slots: finding, finding qualifier, negation, certainty, anatomy and anatomy qualifier. KneeTex extracted information with precision of 98.00 %, recall of 97.63 % and F-measure of 97.81 %, the values of which are in line with human-like performance.

Conclusions: KneeTex is an open-source, stand-alone application for information extraction from narrative reports that describe an MRI scan of the knee. Given an MRI report as input, the system outputs the corresponding clinical findings in the form of JavaScript Object Notation objects. The extracted information is mapped onto TRAK, an ontology that formally models knowledge relevant for the rehabilitation of knee conditions. As a result, formally structured and coded information allows for complex searches to be conducted efficiently over the original MRI reports, thereby effectively supporting epidemiologic studies of knee conditions.

No MeSH data available.


Related in: MedlinePlus