Limits...
Perinatal Exposure to Traffic-Related Air Pollution and Atopy at 1 Year of Age in a Multi-Center Canadian Birth Cohort Study.

Sbihi H, Allen RW, Becker A, Brook JR, Mandhane P, Scott JA, Sears MR, Subbarao P, Takaro TK, Turvey SE, Brauer M - Environ. Health Perspect. (2015)

Bottom Line: This association was stronger among children not attending daycare (aOR = 1.61; 95% CI: 1.28, 2.01) compared with daycare attendees (aOR = 1.05; 95% CI: 0.81, 1.28).Trends to increased risk were also found for food (aOR = 1.17; 95% CI: 0.95, 1.47) and inhalant allergens (aOR = 1.28; 95% CI: 0.93, 1.76).Using refined exposure estimates that incorporated temporal variability and residential mobility, we found that traffic-related air pollution during the first year of life was associated with atopy.

View Article: PubMed Central - PubMed

Affiliation: School of Population and Public Health, University of British Columbia, Vancouver, British Columbia, Canada.

ABSTRACT

Background: The role of traffic-related air pollution (TRAP) exposure in the development of allergic sensitization in children is unclear, and few birth cohort studies have incorporated spatiotemporal exposure assessment.

Objectives: We aimed to examine the association between TRAP and atopy in 1-year-old children from an ongoing national birth cohort study in four Canadian cities.

Methods: We identified 2,477 children of approximately 1 year of age with assessment of atopy for inhalant (Alternaria, Der p, Der f, cat, dog, cockroach) and food-related (milk, eggs, peanuts, soy) allergens. Exposure to nitrogen dioxide (NO2) was estimated from city-specific land use regression models accounting for residential mobility and temporal variability in ambient concentrations. We used mixed models to examine associations between atopy and exposure during pregnancy and the first year of life, including adjustment for covariates (maternal atopy, socioeconomic status, pets, mold, nutrition). We also conducted analyses stratified by time-location patterns, daycare attendance, and modeled home ventilation.

Results: Following spatiotemporal adjustment, TRAP exposure after birth increased the risk for development of atopy to any allergens [adjusted odds ratio (aOR) per 10 μg/m3 NO2 = 1.16; 95% CI: 1.00, 1.41], but not during pregnancy (aOR = 1.02; 95% CI: 0.86, 1.22). This association was stronger among children not attending daycare (aOR = 1.61; 95% CI: 1.28, 2.01) compared with daycare attendees (aOR = 1.05; 95% CI: 0.81, 1.28). Trends to increased risk were also found for food (aOR = 1.17; 95% CI: 0.95, 1.47) and inhalant allergens (aOR = 1.28; 95% CI: 0.93, 1.76).

Conclusion: Using refined exposure estimates that incorporated temporal variability and residential mobility, we found that traffic-related air pollution during the first year of life was associated with atopy.

Citation: Sbihi H, Allen RW, Becker A, Brook JR, Mandhane P, Scott JA, Sears MR, Subbarao P, Takaro TK, Turvey SE, Brauer M. 2015. Perinatal exposure to traffic-related air pollution and atopy at 1 year of age in a multi-center Canadian birth cohort study. Environ Health Perspect 123:902-908; http://dx.doi.org/10.1289/ehp.1408700.

No MeSH data available.


Related in: MedlinePlus

Adjusted odds ratio of atopy per 10-μg/m3 NO2 increase during the first year stratified by (A) time–activity patterns (defined by the city-specific median hours per day based on the three questionnaires submitted after birth around 3, 6, and 12 months) among children spending more time (n = 976) and those spending less time (n = 1,026) away from the home; and (B) daycare facilities attendance among daycare attendees (n = 765) and children never attending daycare (n = 1,236). Models are adjusted for the same covariates as in the main analysis (Figure 1B).
© Copyright Policy - public-domain
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4559953&req=5

f2: Adjusted odds ratio of atopy per 10-μg/m3 NO2 increase during the first year stratified by (A) time–activity patterns (defined by the city-specific median hours per day based on the three questionnaires submitted after birth around 3, 6, and 12 months) among children spending more time (n = 976) and those spending less time (n = 1,026) away from the home; and (B) daycare facilities attendance among daycare attendees (n = 765) and children never attending daycare (n = 1,236). Models are adjusted for the same covariates as in the main analysis (Figure 1B).

Mentions: Analyses of the effect of greater or lesser time spent away from the home indicated improved precision in estimates among children spending more time at the home, and identified a potential source of exposure misclassification (Figure 2A). Participants (n = 976) who spent more time away from the home (median, 3.3 hr/day for all cities) generally had slightly smaller effect estimates with larger confidence intervals (any allergens: aOR = 1.16; 95% CI: 0.85, 1.53) than those spending less time (n = 1,026) away from their home addresses (aOR = 1.22; 95% CI: 1.00, 1.47). This association was likely driven by the sensitization to inhalant allergens (children spending the city-specific median time or less away from home: aOR = 1.61; 95% CI: 1.15, 2.19 vs. those spending more than the city-specific median time away from their homes: aOR = 1.10; 95% CI: 0.69, 1.68).


Perinatal Exposure to Traffic-Related Air Pollution and Atopy at 1 Year of Age in a Multi-Center Canadian Birth Cohort Study.

Sbihi H, Allen RW, Becker A, Brook JR, Mandhane P, Scott JA, Sears MR, Subbarao P, Takaro TK, Turvey SE, Brauer M - Environ. Health Perspect. (2015)

Adjusted odds ratio of atopy per 10-μg/m3 NO2 increase during the first year stratified by (A) time–activity patterns (defined by the city-specific median hours per day based on the three questionnaires submitted after birth around 3, 6, and 12 months) among children spending more time (n = 976) and those spending less time (n = 1,026) away from the home; and (B) daycare facilities attendance among daycare attendees (n = 765) and children never attending daycare (n = 1,236). Models are adjusted for the same covariates as in the main analysis (Figure 1B).
© Copyright Policy - public-domain
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4559953&req=5

f2: Adjusted odds ratio of atopy per 10-μg/m3 NO2 increase during the first year stratified by (A) time–activity patterns (defined by the city-specific median hours per day based on the three questionnaires submitted after birth around 3, 6, and 12 months) among children spending more time (n = 976) and those spending less time (n = 1,026) away from the home; and (B) daycare facilities attendance among daycare attendees (n = 765) and children never attending daycare (n = 1,236). Models are adjusted for the same covariates as in the main analysis (Figure 1B).
Mentions: Analyses of the effect of greater or lesser time spent away from the home indicated improved precision in estimates among children spending more time at the home, and identified a potential source of exposure misclassification (Figure 2A). Participants (n = 976) who spent more time away from the home (median, 3.3 hr/day for all cities) generally had slightly smaller effect estimates with larger confidence intervals (any allergens: aOR = 1.16; 95% CI: 0.85, 1.53) than those spending less time (n = 1,026) away from their home addresses (aOR = 1.22; 95% CI: 1.00, 1.47). This association was likely driven by the sensitization to inhalant allergens (children spending the city-specific median time or less away from home: aOR = 1.61; 95% CI: 1.15, 2.19 vs. those spending more than the city-specific median time away from their homes: aOR = 1.10; 95% CI: 0.69, 1.68).

Bottom Line: This association was stronger among children not attending daycare (aOR = 1.61; 95% CI: 1.28, 2.01) compared with daycare attendees (aOR = 1.05; 95% CI: 0.81, 1.28).Trends to increased risk were also found for food (aOR = 1.17; 95% CI: 0.95, 1.47) and inhalant allergens (aOR = 1.28; 95% CI: 0.93, 1.76).Using refined exposure estimates that incorporated temporal variability and residential mobility, we found that traffic-related air pollution during the first year of life was associated with atopy.

View Article: PubMed Central - PubMed

Affiliation: School of Population and Public Health, University of British Columbia, Vancouver, British Columbia, Canada.

ABSTRACT

Background: The role of traffic-related air pollution (TRAP) exposure in the development of allergic sensitization in children is unclear, and few birth cohort studies have incorporated spatiotemporal exposure assessment.

Objectives: We aimed to examine the association between TRAP and atopy in 1-year-old children from an ongoing national birth cohort study in four Canadian cities.

Methods: We identified 2,477 children of approximately 1 year of age with assessment of atopy for inhalant (Alternaria, Der p, Der f, cat, dog, cockroach) and food-related (milk, eggs, peanuts, soy) allergens. Exposure to nitrogen dioxide (NO2) was estimated from city-specific land use regression models accounting for residential mobility and temporal variability in ambient concentrations. We used mixed models to examine associations between atopy and exposure during pregnancy and the first year of life, including adjustment for covariates (maternal atopy, socioeconomic status, pets, mold, nutrition). We also conducted analyses stratified by time-location patterns, daycare attendance, and modeled home ventilation.

Results: Following spatiotemporal adjustment, TRAP exposure after birth increased the risk for development of atopy to any allergens [adjusted odds ratio (aOR) per 10 μg/m3 NO2 = 1.16; 95% CI: 1.00, 1.41], but not during pregnancy (aOR = 1.02; 95% CI: 0.86, 1.22). This association was stronger among children not attending daycare (aOR = 1.61; 95% CI: 1.28, 2.01) compared with daycare attendees (aOR = 1.05; 95% CI: 0.81, 1.28). Trends to increased risk were also found for food (aOR = 1.17; 95% CI: 0.95, 1.47) and inhalant allergens (aOR = 1.28; 95% CI: 0.93, 1.76).

Conclusion: Using refined exposure estimates that incorporated temporal variability and residential mobility, we found that traffic-related air pollution during the first year of life was associated with atopy.

Citation: Sbihi H, Allen RW, Becker A, Brook JR, Mandhane P, Scott JA, Sears MR, Subbarao P, Takaro TK, Turvey SE, Brauer M. 2015. Perinatal exposure to traffic-related air pollution and atopy at 1 year of age in a multi-center Canadian birth cohort study. Environ Health Perspect 123:902-908; http://dx.doi.org/10.1289/ehp.1408700.

No MeSH data available.


Related in: MedlinePlus