Limits...
Homo naledi, a new species of the genus Homo from the Dinaledi Chamber, South Africa.

Berger LR, Hawks J, de Ruiter DJ, Churchill SE, Schmid P, Delezene LK, Kivell TL, Garvin HM, Williams SA, DeSilva JM, Skinner MM, Musiba CM, Cameron N, Holliday TW, Harcourt-Smith W, Ackermann RR, Bastir M, Bogin B, Bolter D, Brophy J, Cofran ZD, Congdon KA, Deane AS, Dembo M, Drapeau M, Elliott MC, Feuerriegel EM, Garcia-Martinez D, Green DJ, Gurtov A, Irish JD, Kruger A, Laird MF, Marchi D, Meyer MR, Nalla S, Negash EW, Orr CM, Radovcic D, Schroeder L, Scott JE, Throckmorton Z, Tocheri MW, VanSickle C, Walker CS, Wei P, Zipfel B - Elife (2015)

Bottom Line: It also exhibits a humanlike foot and lower limb.These humanlike aspects are contrasted in the postcrania with a more primitive or australopith-like trunk, shoulder, pelvis and proximal femur.Representing at least 15 individuals with most skeletal elements repeated multiple times, this is the largest assemblage of a single species of hominins yet discovered in Africa.

View Article: PubMed Central - PubMed

Affiliation: Evolutionary Studies Institute and Centre of Excellence in PalaeoSciences, University of the Witwatersrand, Johannesburg, South Africa.

ABSTRACT
Homo naledi is a previously-unknown species of extinct hominin discovered within the Dinaledi Chamber of the Rising Star cave system, Cradle of Humankind, South Africa. This species is characterized by body mass and stature similar to small-bodied human populations but a small endocranial volume similar to australopiths. Cranial morphology of H. naledi is unique, but most similar to early Homo species including Homo erectus, Homo habilis or Homo rudolfensis. While primitive, the dentition is generally small and simple in occlusal morphology. H. naledi has humanlike manipulatory adaptations of the hand and wrist. It also exhibits a humanlike foot and lower limb. These humanlike aspects are contrasted in the postcrania with a more primitive or australopith-like trunk, shoulder, pelvis and proximal femur. Representing at least 15 individuals with most skeletal elements repeated multiple times, this is the largest assemblage of a single species of hominins yet discovered in Africa.

No MeSH data available.


Related in: MedlinePlus

Maximum tibia length in H. naledi and other hominins.Maximum tibia length for U.W. 101-484, compared to other nearly complete hominin tibia specimens. Australopithecus afarensis represented by A.L. 288-1 and KSD-VP-1/1 (Haile-Selassie et al., 2010); Homo erectus represented by D3901 from Dmanisi and KNM-WT 15000; Homo habilis by OH 35; Homo floresiensis by LB1 and LB8 (Brown et al., 2004; Morwood et al., 2005). Chimpanzee and contemporary European ancestry humans from Cleveland Museum of Natural History (Lee, 2001); Andaman Islanders from Stock (2013). Vertical lines represent sample ranges; bars represent 1 standard deviation.DOI:http://dx.doi.org/10.7554/eLife.09560.015
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4559886&req=5

fig10: Maximum tibia length in H. naledi and other hominins.Maximum tibia length for U.W. 101-484, compared to other nearly complete hominin tibia specimens. Australopithecus afarensis represented by A.L. 288-1 and KSD-VP-1/1 (Haile-Selassie et al., 2010); Homo erectus represented by D3901 from Dmanisi and KNM-WT 15000; Homo habilis by OH 35; Homo floresiensis by LB1 and LB8 (Brown et al., 2004; Morwood et al., 2005). Chimpanzee and contemporary European ancestry humans from Cleveland Museum of Natural History (Lee, 2001); Andaman Islanders from Stock (2013). Vertical lines represent sample ranges; bars represent 1 standard deviation.DOI:http://dx.doi.org/10.7554/eLife.09560.015

Mentions: H. naledi has a range of body mass similar to small-bodied modern human populations, and is similar in estimated stature to both small-bodied humans and the largest known australopiths. We estimated body mass from eight femoral specimens for which subtrochanteric diameters can be measured (‘Materials and methods’), with results ranging between 39.7 kg and 55.8 kg (Table 3). No femur specimen is sufficiently complete to measure femur length accurately, but the U.W. 101-484 tibia preserves nearly its complete length, allowing a tibia length estimate of 325 mm (Figure 10). Estimates for the stature of this individual based on African human population samples range between 144.5 and 147.8 mm. Again, this stature estimate is similar to small-bodied modern human populations. It is within the range estimated for Dmanisi postcranial elements (Lordkipanidze et al., 2007), and slightly smaller than estimated for early Homo femoral specimens KNM-ER 1472 and KNM-ER 1481. Some large australopiths also had long tibiae and presumably comparably tall statures, as evidenced by the KSD-VP 1/1 skeleton from Woranso-Mille (Haile-Selassie et al., 2010).10.7554/eLife.09560.014Table 3.


Homo naledi, a new species of the genus Homo from the Dinaledi Chamber, South Africa.

Berger LR, Hawks J, de Ruiter DJ, Churchill SE, Schmid P, Delezene LK, Kivell TL, Garvin HM, Williams SA, DeSilva JM, Skinner MM, Musiba CM, Cameron N, Holliday TW, Harcourt-Smith W, Ackermann RR, Bastir M, Bogin B, Bolter D, Brophy J, Cofran ZD, Congdon KA, Deane AS, Dembo M, Drapeau M, Elliott MC, Feuerriegel EM, Garcia-Martinez D, Green DJ, Gurtov A, Irish JD, Kruger A, Laird MF, Marchi D, Meyer MR, Nalla S, Negash EW, Orr CM, Radovcic D, Schroeder L, Scott JE, Throckmorton Z, Tocheri MW, VanSickle C, Walker CS, Wei P, Zipfel B - Elife (2015)

Maximum tibia length in H. naledi and other hominins.Maximum tibia length for U.W. 101-484, compared to other nearly complete hominin tibia specimens. Australopithecus afarensis represented by A.L. 288-1 and KSD-VP-1/1 (Haile-Selassie et al., 2010); Homo erectus represented by D3901 from Dmanisi and KNM-WT 15000; Homo habilis by OH 35; Homo floresiensis by LB1 and LB8 (Brown et al., 2004; Morwood et al., 2005). Chimpanzee and contemporary European ancestry humans from Cleveland Museum of Natural History (Lee, 2001); Andaman Islanders from Stock (2013). Vertical lines represent sample ranges; bars represent 1 standard deviation.DOI:http://dx.doi.org/10.7554/eLife.09560.015
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4559886&req=5

fig10: Maximum tibia length in H. naledi and other hominins.Maximum tibia length for U.W. 101-484, compared to other nearly complete hominin tibia specimens. Australopithecus afarensis represented by A.L. 288-1 and KSD-VP-1/1 (Haile-Selassie et al., 2010); Homo erectus represented by D3901 from Dmanisi and KNM-WT 15000; Homo habilis by OH 35; Homo floresiensis by LB1 and LB8 (Brown et al., 2004; Morwood et al., 2005). Chimpanzee and contemporary European ancestry humans from Cleveland Museum of Natural History (Lee, 2001); Andaman Islanders from Stock (2013). Vertical lines represent sample ranges; bars represent 1 standard deviation.DOI:http://dx.doi.org/10.7554/eLife.09560.015
Mentions: H. naledi has a range of body mass similar to small-bodied modern human populations, and is similar in estimated stature to both small-bodied humans and the largest known australopiths. We estimated body mass from eight femoral specimens for which subtrochanteric diameters can be measured (‘Materials and methods’), with results ranging between 39.7 kg and 55.8 kg (Table 3). No femur specimen is sufficiently complete to measure femur length accurately, but the U.W. 101-484 tibia preserves nearly its complete length, allowing a tibia length estimate of 325 mm (Figure 10). Estimates for the stature of this individual based on African human population samples range between 144.5 and 147.8 mm. Again, this stature estimate is similar to small-bodied modern human populations. It is within the range estimated for Dmanisi postcranial elements (Lordkipanidze et al., 2007), and slightly smaller than estimated for early Homo femoral specimens KNM-ER 1472 and KNM-ER 1481. Some large australopiths also had long tibiae and presumably comparably tall statures, as evidenced by the KSD-VP 1/1 skeleton from Woranso-Mille (Haile-Selassie et al., 2010).10.7554/eLife.09560.014Table 3.

Bottom Line: It also exhibits a humanlike foot and lower limb.These humanlike aspects are contrasted in the postcrania with a more primitive or australopith-like trunk, shoulder, pelvis and proximal femur.Representing at least 15 individuals with most skeletal elements repeated multiple times, this is the largest assemblage of a single species of hominins yet discovered in Africa.

View Article: PubMed Central - PubMed

Affiliation: Evolutionary Studies Institute and Centre of Excellence in PalaeoSciences, University of the Witwatersrand, Johannesburg, South Africa.

ABSTRACT
Homo naledi is a previously-unknown species of extinct hominin discovered within the Dinaledi Chamber of the Rising Star cave system, Cradle of Humankind, South Africa. This species is characterized by body mass and stature similar to small-bodied human populations but a small endocranial volume similar to australopiths. Cranial morphology of H. naledi is unique, but most similar to early Homo species including Homo erectus, Homo habilis or Homo rudolfensis. While primitive, the dentition is generally small and simple in occlusal morphology. H. naledi has humanlike manipulatory adaptations of the hand and wrist. It also exhibits a humanlike foot and lower limb. These humanlike aspects are contrasted in the postcrania with a more primitive or australopith-like trunk, shoulder, pelvis and proximal femur. Representing at least 15 individuals with most skeletal elements repeated multiple times, this is the largest assemblage of a single species of hominins yet discovered in Africa.

No MeSH data available.


Related in: MedlinePlus