Limits...
Hybrid Bacterial Foraging and Particle Swarm Optimization for detecting Bundle Branch Block.

Kora P, Kalva SR - Springerplus (2015)

Bottom Line: BBB makes it harder for the heart to pump blood effectively through the heart circulatory system.This BFPSO method performs local search through the chemotactic movement of BFO and the global search over the entire search domain is accomplished by a PSO operator.The BFPSO feature values are given as the input for the Levenberg-Marquardt Neural Network classifier.

View Article: PubMed Central - PubMed

Affiliation: Department of ECE, GRIET, Bachupally, Hyderabad, 500090 India.

ABSTRACT
Abnormal cardiac beat identification is a key process in the detection of heart diseases. Our present study describes a procedure for the detection of left and right bundle branch block (LBBB and RBBB) Electrocardiogram (ECG) patterns. The electrical impulses that control the cardiac beat face difficulty in moving inside the heart. This problem is termed as bundle branch block (BBB). BBB makes it harder for the heart to pump blood effectively through the heart circulatory system. ECG feature extraction is a key process in detecting heart ailments. Our present study comes up with a hybrid method combining two heuristic optimization methods: Bacterial Forging Optimization (BFO) and Particle Swarm Optimization (PSO) for the feature selection of ECG signals. One of the major controlling forces of BFO algorithm is the chemotactic movement of a bacterium that models a test solution. The chemotaxis process of the BFO depends on random search directions which may lead to a delay in achieving the global optimum solution. The hybrid technique: Bacterial Forging-Particle Swarm Optimization (BFPSO) incorporates the concepts from BFO and PSO and it creates individuals in a new generation. This BFPSO method performs local search through the chemotactic movement of BFO and the global search over the entire search domain is accomplished by a PSO operator. The BFPSO feature values are given as the input for the Levenberg-Marquardt Neural Network classifier.

No MeSH data available.


Related in: MedlinePlus

Left bundle branch block
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4559560&req=5

Fig2: Left bundle branch block

Mentions: The waveform changes in the different types of ECG beats have been shown in the Figs. 1, 2 and 3.Fig. 1


Hybrid Bacterial Foraging and Particle Swarm Optimization for detecting Bundle Branch Block.

Kora P, Kalva SR - Springerplus (2015)

Left bundle branch block
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4559560&req=5

Fig2: Left bundle branch block
Mentions: The waveform changes in the different types of ECG beats have been shown in the Figs. 1, 2 and 3.Fig. 1

Bottom Line: BBB makes it harder for the heart to pump blood effectively through the heart circulatory system.This BFPSO method performs local search through the chemotactic movement of BFO and the global search over the entire search domain is accomplished by a PSO operator.The BFPSO feature values are given as the input for the Levenberg-Marquardt Neural Network classifier.

View Article: PubMed Central - PubMed

Affiliation: Department of ECE, GRIET, Bachupally, Hyderabad, 500090 India.

ABSTRACT
Abnormal cardiac beat identification is a key process in the detection of heart diseases. Our present study describes a procedure for the detection of left and right bundle branch block (LBBB and RBBB) Electrocardiogram (ECG) patterns. The electrical impulses that control the cardiac beat face difficulty in moving inside the heart. This problem is termed as bundle branch block (BBB). BBB makes it harder for the heart to pump blood effectively through the heart circulatory system. ECG feature extraction is a key process in detecting heart ailments. Our present study comes up with a hybrid method combining two heuristic optimization methods: Bacterial Forging Optimization (BFO) and Particle Swarm Optimization (PSO) for the feature selection of ECG signals. One of the major controlling forces of BFO algorithm is the chemotactic movement of a bacterium that models a test solution. The chemotaxis process of the BFO depends on random search directions which may lead to a delay in achieving the global optimum solution. The hybrid technique: Bacterial Forging-Particle Swarm Optimization (BFPSO) incorporates the concepts from BFO and PSO and it creates individuals in a new generation. This BFPSO method performs local search through the chemotactic movement of BFO and the global search over the entire search domain is accomplished by a PSO operator. The BFPSO feature values are given as the input for the Levenberg-Marquardt Neural Network classifier.

No MeSH data available.


Related in: MedlinePlus