Limits...
Genomic instability and cellular stress in organ biopsies and peripheral blood lymphocytes from patients with colorectal cancer and predisposing pathologies.

Lombardi S, Fuoco I, di Fluri G, Costa F, Ricchiuti A, Biondi G, Nardini V, Scarpato R - Oncotarget (2015)

Bottom Line: Genomic instability is a cancer hallmark and is connected to changes in chromosomal structure, often caused by double strand break formation (DSB), and aneuploidy.Colorectal tissues lost GSTO1 expression but increased nuclear localization with pathology progression.Evaluation of genomic damage and cellular stress in colorectal pathologies may facilitate prevention and management of CRC.

View Article: PubMed Central - PubMed

Affiliation: Unità di Genetica, Dipartimento di Biologia, University of Pisa, Pisa, Italy.

ABSTRACT
Inflammatory bowel disease (IBD) and polyps, are common colorectal pathologies in western society and are risk factors for development of colorectal cancer (CRC). Genomic instability is a cancer hallmark and is connected to changes in chromosomal structure, often caused by double strand break formation (DSB), and aneuploidy. Cellular stress, may contribute to genomic instability. In colorectal biopsies and peripheral blood lymphocytes of patients with IBD, polyps and CRC, we evaluated 1) genomic instability using the γH2AX assay as marker of DSB and micronuclei in mononuclear lymphocytes kept under cytodieresis inhibition, and 2) cellular stress through expression and cellular localization of glutathione-S-transferase omega 1 (GSTO1). Colon biopsies showed γH2AX increase starting from polyps, while lymphocytes already from IBD. Micronuclei frequency began to rise in lymphocytes of subjects with polyps, suggesting a systemic genomic instability condition. Colorectal tissues lost GSTO1 expression but increased nuclear localization with pathology progression. Lymphocytes did not change GSTO1 expression and localization until CRC formation, where enzyme expression was increased. We propose that the growing genomic instability found in our patients is connected with the alteration of cellular environment. Evaluation of genomic damage and cellular stress in colorectal pathologies may facilitate prevention and management of CRC.

No MeSH data available.


Related in: MedlinePlus

γH2AX immunohistochemistry resultsPanel A. average levels of γH2AX in the study population expressed as percentage of positive cells; * and a indicate a significant difference (P < 0.01) from healthy tissue and IBD samples, respectively. In each group, bars represent the mean ± SE. Panel B. box and whisker plot displaying data dispersion for γH2AX in each category. Panel C. photos of γH2AX expression in tissues from 1) healthy, 2) IBD, 3) polyp and 4) cancer biopsies. 200x magnification.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4558120&req=5

Figure 1: γH2AX immunohistochemistry resultsPanel A. average levels of γH2AX in the study population expressed as percentage of positive cells; * and a indicate a significant difference (P < 0.01) from healthy tissue and IBD samples, respectively. In each group, bars represent the mean ± SE. Panel B. box and whisker plot displaying data dispersion for γH2AX in each category. Panel C. photos of γH2AX expression in tissues from 1) healthy, 2) IBD, 3) polyp and 4) cancer biopsies. 200x magnification.

Mentions: The results of multivariate analysis in tissue samples, corrected for sex and age, is visualized in Figure 1A. Polyps (1.12 ± 0.34%) and CRC (1.32 ± 0.34%) show significantly (P < 0.01) higher phosphorylation levels than healthy (0.41 ± 0.12%) and IBD (0.34 ± 0.08%) samples. A deeper observation of data distribution in the study population, as graphically visualized in the box and whisker plots (Figure 1B), reveals a strong dispersion of the single observations for CRC and polyp categories with respect to IBD and healthy biopsies. In addition, the γH2AX percentage of positive cells that limits the lower quartile of CRC is lower (0.08%) than the one observed in healthy tissue (0.13%) while, in polyps, this value is the highest (0.26%). Anatomical biopsy provenience does not have an effect on γH2AX even if, proceeding to more distal intestinal regions, we observed a slight increase in H2AX phosphorylation, suggesting a higher sensitivity of these districts (data not shown). We did not find significant differences either between dysplasic and hyperplastic polyps or within IBD pathologies although H2AX phosphorylation levels doubled in CD (0.49 ± 1.17%) with respect to UC (0.24 ± 0.05%) (data not shown). Qualitatively, the superficial epithelium is the colorectal mucosa portion principally involved in γH2AX formation, with some positive nuclei on the base of the crypt, near the stem cell compartment. In the IBD sections we observed a principal positivity of the stromal portion of mucosa, probably in connection with the immunity cellular infiltration in this region (Figure 1C).


Genomic instability and cellular stress in organ biopsies and peripheral blood lymphocytes from patients with colorectal cancer and predisposing pathologies.

Lombardi S, Fuoco I, di Fluri G, Costa F, Ricchiuti A, Biondi G, Nardini V, Scarpato R - Oncotarget (2015)

γH2AX immunohistochemistry resultsPanel A. average levels of γH2AX in the study population expressed as percentage of positive cells; * and a indicate a significant difference (P < 0.01) from healthy tissue and IBD samples, respectively. In each group, bars represent the mean ± SE. Panel B. box and whisker plot displaying data dispersion for γH2AX in each category. Panel C. photos of γH2AX expression in tissues from 1) healthy, 2) IBD, 3) polyp and 4) cancer biopsies. 200x magnification.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4558120&req=5

Figure 1: γH2AX immunohistochemistry resultsPanel A. average levels of γH2AX in the study population expressed as percentage of positive cells; * and a indicate a significant difference (P < 0.01) from healthy tissue and IBD samples, respectively. In each group, bars represent the mean ± SE. Panel B. box and whisker plot displaying data dispersion for γH2AX in each category. Panel C. photos of γH2AX expression in tissues from 1) healthy, 2) IBD, 3) polyp and 4) cancer biopsies. 200x magnification.
Mentions: The results of multivariate analysis in tissue samples, corrected for sex and age, is visualized in Figure 1A. Polyps (1.12 ± 0.34%) and CRC (1.32 ± 0.34%) show significantly (P < 0.01) higher phosphorylation levels than healthy (0.41 ± 0.12%) and IBD (0.34 ± 0.08%) samples. A deeper observation of data distribution in the study population, as graphically visualized in the box and whisker plots (Figure 1B), reveals a strong dispersion of the single observations for CRC and polyp categories with respect to IBD and healthy biopsies. In addition, the γH2AX percentage of positive cells that limits the lower quartile of CRC is lower (0.08%) than the one observed in healthy tissue (0.13%) while, in polyps, this value is the highest (0.26%). Anatomical biopsy provenience does not have an effect on γH2AX even if, proceeding to more distal intestinal regions, we observed a slight increase in H2AX phosphorylation, suggesting a higher sensitivity of these districts (data not shown). We did not find significant differences either between dysplasic and hyperplastic polyps or within IBD pathologies although H2AX phosphorylation levels doubled in CD (0.49 ± 1.17%) with respect to UC (0.24 ± 0.05%) (data not shown). Qualitatively, the superficial epithelium is the colorectal mucosa portion principally involved in γH2AX formation, with some positive nuclei on the base of the crypt, near the stem cell compartment. In the IBD sections we observed a principal positivity of the stromal portion of mucosa, probably in connection with the immunity cellular infiltration in this region (Figure 1C).

Bottom Line: Genomic instability is a cancer hallmark and is connected to changes in chromosomal structure, often caused by double strand break formation (DSB), and aneuploidy.Colorectal tissues lost GSTO1 expression but increased nuclear localization with pathology progression.Evaluation of genomic damage and cellular stress in colorectal pathologies may facilitate prevention and management of CRC.

View Article: PubMed Central - PubMed

Affiliation: Unità di Genetica, Dipartimento di Biologia, University of Pisa, Pisa, Italy.

ABSTRACT
Inflammatory bowel disease (IBD) and polyps, are common colorectal pathologies in western society and are risk factors for development of colorectal cancer (CRC). Genomic instability is a cancer hallmark and is connected to changes in chromosomal structure, often caused by double strand break formation (DSB), and aneuploidy. Cellular stress, may contribute to genomic instability. In colorectal biopsies and peripheral blood lymphocytes of patients with IBD, polyps and CRC, we evaluated 1) genomic instability using the γH2AX assay as marker of DSB and micronuclei in mononuclear lymphocytes kept under cytodieresis inhibition, and 2) cellular stress through expression and cellular localization of glutathione-S-transferase omega 1 (GSTO1). Colon biopsies showed γH2AX increase starting from polyps, while lymphocytes already from IBD. Micronuclei frequency began to rise in lymphocytes of subjects with polyps, suggesting a systemic genomic instability condition. Colorectal tissues lost GSTO1 expression but increased nuclear localization with pathology progression. Lymphocytes did not change GSTO1 expression and localization until CRC formation, where enzyme expression was increased. We propose that the growing genomic instability found in our patients is connected with the alteration of cellular environment. Evaluation of genomic damage and cellular stress in colorectal pathologies may facilitate prevention and management of CRC.

No MeSH data available.


Related in: MedlinePlus