Limits...
Lack of genetic structure in greylag goose (Anser anser) populations along the European Atlantic flyway.

Pellegrino I, Cucco M, Follestad A, Boos M - PeerJ (2015)

Bottom Line: The NJ tree does not show evidence of any single clades grouping together all individuals from the same geographic area.Besides, individuals from each site are found in different branches.Bayesian clustering procedures on 14 microsatellites (169 individuals) did not detect any geographically distinct cluster, and a high genetic admixture was recorded in all studied areas except for the individuals from the breeding sites in Norway, which were genetically very close.

View Article: PubMed Central - HTML - PubMed

Affiliation: University of Piemonte Orientale, DISIT , Alessandria , Italy.

ABSTRACT
Greylag goose populations are steadily increasing in north-western Europe. Although individuals breeding in the Netherlands have been considered mainly sedentary birds, those from Scandinavia or northern Germany fly towards their winter quarters, namely over France as far as Spain. This study aimed to determine the genetic structure of these birds, and to evaluate how goose populations mix. We used mitochondrial DNA and microsatellites from individuals distributed throughout the European Atlantic flyway, from breeding sites in Norway and the Netherlands to stopover and wintering sites in northern and south-western France. The mtDNA marker (CR1 D-Loop, 288 bp sequence, 144 ind.) showed 23 different haplotypes. The genetic distances amongst individuals sampled in Norway, northern France and the Netherlands were low (range 0.012-0.013). Individuals in south-western France showed a slightly higher genetic distance compared to all other sampling areas (ranges 0.018-0.022). The NJ tree does not show evidence of any single clades grouping together all individuals from the same geographic area. Besides, individuals from each site are found in different branches. Bayesian clustering procedures on 14 microsatellites (169 individuals) did not detect any geographically distinct cluster, and a high genetic admixture was recorded in all studied areas except for the individuals from the breeding sites in Norway, which were genetically very close. Estimation of migration rates through Bayesian inference confirms the scenario for the current mixing of goose populations.

No MeSH data available.


Greylag goose distribution in Europe.Main Anser anser flyways from breeding (red) to wintering (blue) areas (modified from IUCN, 2015). Pie charts indicate the proportion of different haplotypes (mtDNA) found in each sampled population. Colours are identical to those used in the haplotype network (Fig. 2), and haplotypes found in one area alone are the same colour.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4558074&req=5

fig-1: Greylag goose distribution in Europe.Main Anser anser flyways from breeding (red) to wintering (blue) areas (modified from IUCN, 2015). Pie charts indicate the proportion of different haplotypes (mtDNA) found in each sampled population. Colours are identical to those used in the haplotype network (Fig. 2), and haplotypes found in one area alone are the same colour.

Mentions: We analyzed feather samples from 174 greylag geese (Appendix S1) collected over the European Atlantic flyway (from two breeding grounds: in north and western Norway, and six staging grounds: in the Netherlands, northern France and south-western France; see Table 1 and Fig. 1). One additional individual was collected in the Republic of Kalmykia in an area associated with the eastern rubrirostris subspecies (Cramp, 1977). During the 2010/2011 and 2011/2012 (including 1–10 February) wintering seasons in France, goose feathers were obtained from greylag geese collected during the legal hunting period in natural areas by hunters collaborating with the study. Samples from the Netherlands were obtained on wild free-ranging geese collected in natural areas in the Zeeland region (near Rilland) by a local hunter before the 20th of September in 2011 and 2013, i.e., before the arrival of geese breeding in Norway or in Sweden (Nilsson, 2007; M Boos, pers. obs., 2014 based on GPS data). Samples from Norway were obtained from birds that were collected during the spring and summer legal hunting seasons, or from geese that were caught during the moulting period in 2010 and 2011 by A.F. for the Nordic Greylag Goose Project, which studies the ecology of the Norwegian breeding goose population (Nilsson, 2007). Feather calami were stored in ethanol at −20 °C, and total DNA was extracted using the commercial NucleoSpin® Tissue kit (Macherey–Nagel, Düren, Germany). After extraction, genomic DNA was stocked at −20 °C.


Lack of genetic structure in greylag goose (Anser anser) populations along the European Atlantic flyway.

Pellegrino I, Cucco M, Follestad A, Boos M - PeerJ (2015)

Greylag goose distribution in Europe.Main Anser anser flyways from breeding (red) to wintering (blue) areas (modified from IUCN, 2015). Pie charts indicate the proportion of different haplotypes (mtDNA) found in each sampled population. Colours are identical to those used in the haplotype network (Fig. 2), and haplotypes found in one area alone are the same colour.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4558074&req=5

fig-1: Greylag goose distribution in Europe.Main Anser anser flyways from breeding (red) to wintering (blue) areas (modified from IUCN, 2015). Pie charts indicate the proportion of different haplotypes (mtDNA) found in each sampled population. Colours are identical to those used in the haplotype network (Fig. 2), and haplotypes found in one area alone are the same colour.
Mentions: We analyzed feather samples from 174 greylag geese (Appendix S1) collected over the European Atlantic flyway (from two breeding grounds: in north and western Norway, and six staging grounds: in the Netherlands, northern France and south-western France; see Table 1 and Fig. 1). One additional individual was collected in the Republic of Kalmykia in an area associated with the eastern rubrirostris subspecies (Cramp, 1977). During the 2010/2011 and 2011/2012 (including 1–10 February) wintering seasons in France, goose feathers were obtained from greylag geese collected during the legal hunting period in natural areas by hunters collaborating with the study. Samples from the Netherlands were obtained on wild free-ranging geese collected in natural areas in the Zeeland region (near Rilland) by a local hunter before the 20th of September in 2011 and 2013, i.e., before the arrival of geese breeding in Norway or in Sweden (Nilsson, 2007; M Boos, pers. obs., 2014 based on GPS data). Samples from Norway were obtained from birds that were collected during the spring and summer legal hunting seasons, or from geese that were caught during the moulting period in 2010 and 2011 by A.F. for the Nordic Greylag Goose Project, which studies the ecology of the Norwegian breeding goose population (Nilsson, 2007). Feather calami were stored in ethanol at −20 °C, and total DNA was extracted using the commercial NucleoSpin® Tissue kit (Macherey–Nagel, Düren, Germany). After extraction, genomic DNA was stocked at −20 °C.

Bottom Line: The NJ tree does not show evidence of any single clades grouping together all individuals from the same geographic area.Besides, individuals from each site are found in different branches.Bayesian clustering procedures on 14 microsatellites (169 individuals) did not detect any geographically distinct cluster, and a high genetic admixture was recorded in all studied areas except for the individuals from the breeding sites in Norway, which were genetically very close.

View Article: PubMed Central - HTML - PubMed

Affiliation: University of Piemonte Orientale, DISIT , Alessandria , Italy.

ABSTRACT
Greylag goose populations are steadily increasing in north-western Europe. Although individuals breeding in the Netherlands have been considered mainly sedentary birds, those from Scandinavia or northern Germany fly towards their winter quarters, namely over France as far as Spain. This study aimed to determine the genetic structure of these birds, and to evaluate how goose populations mix. We used mitochondrial DNA and microsatellites from individuals distributed throughout the European Atlantic flyway, from breeding sites in Norway and the Netherlands to stopover and wintering sites in northern and south-western France. The mtDNA marker (CR1 D-Loop, 288 bp sequence, 144 ind.) showed 23 different haplotypes. The genetic distances amongst individuals sampled in Norway, northern France and the Netherlands were low (range 0.012-0.013). Individuals in south-western France showed a slightly higher genetic distance compared to all other sampling areas (ranges 0.018-0.022). The NJ tree does not show evidence of any single clades grouping together all individuals from the same geographic area. Besides, individuals from each site are found in different branches. Bayesian clustering procedures on 14 microsatellites (169 individuals) did not detect any geographically distinct cluster, and a high genetic admixture was recorded in all studied areas except for the individuals from the breeding sites in Norway, which were genetically very close. Estimation of migration rates through Bayesian inference confirms the scenario for the current mixing of goose populations.

No MeSH data available.