Limits...
Gender differences in crowd perception.

Bai Y, Leib AY, Puri AM, Whitney D, Peng K - Front Psychol (2015)

Bottom Line: In this study, we investigated whether the first impression of a crowd of faces-crowd perception-is influenced by social background and cognitive processing.Furthermore, the results showed that females were generally more accurate in estimating the average identity of a crowd.Overall, the results suggest that group perception is not an isolated or uniform cognitive mechanism, but rather one that interacts with biological and social processes.

View Article: PubMed Central - PubMed

Affiliation: Department of Psychology, University of California, Berkeley Berkeley, CA, USA.

ABSTRACT
In this study, we investigated whether the first impression of a crowd of faces-crowd perception-is influenced by social background and cognitive processing. Specifically, we explored whether males and females, two groups that are distinct biologically and socially, differ in their ability to extract ensemble characteristics from crowds of faces that were comprised of different identities. Participants were presented with crowds of similar faces and were instructed to scroll through a morphed continuum of faces until they found a face that was representative of the average identity of each crowd. Consistent with previous research, females were more precise in single face perception. Furthermore, the results showed that females were generally more accurate in estimating the average identity of a crowd. However, the correlation between single face discrimination and crowd averaging differed between males and females. Specifically, male subjects' ensemble integration slightly compensated for their poor single face perception; their performance on the crowd perception task was not as poor as would be expected from their single face discrimination ability. Overall, the results suggest that group perception is not an isolated or uniform cognitive mechanism, but rather one that interacts with biological and social processes.

No MeSH data available.


Related in: MedlinePlus

Simulation result. (A) Twelve faces were chosen by the program to replicate the empirical experiment (the faces were −3, −9 and +3, +9 units away from the randomly selected mean). (B) A simulated integration process in which participants averaged 1–12 (two in the figure) noisily encoded faces to estimate the mean. Noise was determined by the standard deviations of participants' error distributions for the single face perception condition. (C) Linear fit of subjects' simulated crowd face perception sensitivity as a function of single face discrimination. We depict increasing integration conditions ranging from the smallest set (one face) to the largest set (12 faces) from right to left. We observe a pattern of steeper slopes with increased integration, consistent with conclusion that males integrated more faces than females, despite their relatively poor overall ensemble coding performance.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4557101&req=5

Figure 4: Simulation result. (A) Twelve faces were chosen by the program to replicate the empirical experiment (the faces were −3, −9 and +3, +9 units away from the randomly selected mean). (B) A simulated integration process in which participants averaged 1–12 (two in the figure) noisily encoded faces to estimate the mean. Noise was determined by the standard deviations of participants' error distributions for the single face perception condition. (C) Linear fit of subjects' simulated crowd face perception sensitivity as a function of single face discrimination. We depict increasing integration conditions ranging from the smallest set (one face) to the largest set (12 faces) from right to left. We observe a pattern of steeper slopes with increased integration, consistent with conclusion that males integrated more faces than females, despite their relatively poor overall ensemble coding performance.

Mentions: Many ensemble coding experiments simulate the number of faces/objects integrated into the ensemble percept (Haberman and Whitney, 2010; Leib et al., 2012; Im and Halberda, 2013). This follow-up analysis allows researchers to investigate specifics of the ensemble coding mechanism when large numbers of items are integrated into the ensemble percept. This is important because while statistical averaging can technically include as little as two faces from the crowd, in natural settings integrating more faces would yield the greatest information about the crowd. Thus, we investigated whether previously observed patterns between males and females remain robust under such simulations. Specifically, how does single face sensitivity correlate with crowd sensitivity when larger numbers of faces are integrated from the display? The simulation contained the following four steps: (1) We simulated the value (relative to the mean) of the faces displayed—in this case (−9 to +9) (see Figure 4A). (2) Next, we simulated the number of faces (N) sampled from the display. Each face was drawn from a Gaussian distribution centered at the display face value. (3) Next, noise was added to the chosen face values based on the range of the participants' empirical data in the single face condition (Figure 4B shows a description of this step). (4) N face values were averaged in a noise-free integration step. (5) Error was determined by subtracting this average from the true mean of the crowd3. We simulated 1000 bootstrapped trials and the standard deviation of the error distribution was calculated and regarded as the simulated group perception performance. For each simulation, we iteratively chose a higher N to simulate performance when participants systematically integrated more and more faces in the display.


Gender differences in crowd perception.

Bai Y, Leib AY, Puri AM, Whitney D, Peng K - Front Psychol (2015)

Simulation result. (A) Twelve faces were chosen by the program to replicate the empirical experiment (the faces were −3, −9 and +3, +9 units away from the randomly selected mean). (B) A simulated integration process in which participants averaged 1–12 (two in the figure) noisily encoded faces to estimate the mean. Noise was determined by the standard deviations of participants' error distributions for the single face perception condition. (C) Linear fit of subjects' simulated crowd face perception sensitivity as a function of single face discrimination. We depict increasing integration conditions ranging from the smallest set (one face) to the largest set (12 faces) from right to left. We observe a pattern of steeper slopes with increased integration, consistent with conclusion that males integrated more faces than females, despite their relatively poor overall ensemble coding performance.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4557101&req=5

Figure 4: Simulation result. (A) Twelve faces were chosen by the program to replicate the empirical experiment (the faces were −3, −9 and +3, +9 units away from the randomly selected mean). (B) A simulated integration process in which participants averaged 1–12 (two in the figure) noisily encoded faces to estimate the mean. Noise was determined by the standard deviations of participants' error distributions for the single face perception condition. (C) Linear fit of subjects' simulated crowd face perception sensitivity as a function of single face discrimination. We depict increasing integration conditions ranging from the smallest set (one face) to the largest set (12 faces) from right to left. We observe a pattern of steeper slopes with increased integration, consistent with conclusion that males integrated more faces than females, despite their relatively poor overall ensemble coding performance.
Mentions: Many ensemble coding experiments simulate the number of faces/objects integrated into the ensemble percept (Haberman and Whitney, 2010; Leib et al., 2012; Im and Halberda, 2013). This follow-up analysis allows researchers to investigate specifics of the ensemble coding mechanism when large numbers of items are integrated into the ensemble percept. This is important because while statistical averaging can technically include as little as two faces from the crowd, in natural settings integrating more faces would yield the greatest information about the crowd. Thus, we investigated whether previously observed patterns between males and females remain robust under such simulations. Specifically, how does single face sensitivity correlate with crowd sensitivity when larger numbers of faces are integrated from the display? The simulation contained the following four steps: (1) We simulated the value (relative to the mean) of the faces displayed—in this case (−9 to +9) (see Figure 4A). (2) Next, we simulated the number of faces (N) sampled from the display. Each face was drawn from a Gaussian distribution centered at the display face value. (3) Next, noise was added to the chosen face values based on the range of the participants' empirical data in the single face condition (Figure 4B shows a description of this step). (4) N face values were averaged in a noise-free integration step. (5) Error was determined by subtracting this average from the true mean of the crowd3. We simulated 1000 bootstrapped trials and the standard deviation of the error distribution was calculated and regarded as the simulated group perception performance. For each simulation, we iteratively chose a higher N to simulate performance when participants systematically integrated more and more faces in the display.

Bottom Line: In this study, we investigated whether the first impression of a crowd of faces-crowd perception-is influenced by social background and cognitive processing.Furthermore, the results showed that females were generally more accurate in estimating the average identity of a crowd.Overall, the results suggest that group perception is not an isolated or uniform cognitive mechanism, but rather one that interacts with biological and social processes.

View Article: PubMed Central - PubMed

Affiliation: Department of Psychology, University of California, Berkeley Berkeley, CA, USA.

ABSTRACT
In this study, we investigated whether the first impression of a crowd of faces-crowd perception-is influenced by social background and cognitive processing. Specifically, we explored whether males and females, two groups that are distinct biologically and socially, differ in their ability to extract ensemble characteristics from crowds of faces that were comprised of different identities. Participants were presented with crowds of similar faces and were instructed to scroll through a morphed continuum of faces until they found a face that was representative of the average identity of each crowd. Consistent with previous research, females were more precise in single face perception. Furthermore, the results showed that females were generally more accurate in estimating the average identity of a crowd. However, the correlation between single face discrimination and crowd averaging differed between males and females. Specifically, male subjects' ensemble integration slightly compensated for their poor single face perception; their performance on the crowd perception task was not as poor as would be expected from their single face discrimination ability. Overall, the results suggest that group perception is not an isolated or uniform cognitive mechanism, but rather one that interacts with biological and social processes.

No MeSH data available.


Related in: MedlinePlus