Limits...
A Brief Review of Bioactive Metabolites Derived from Deep-Sea Fungi.

Wang YT, Xue YR, Liu CH - Mar Drugs (2015)

Bottom Line: To date more than 180 bioactive secondary metabolites derived from deep-sea fungi have been documented in the literature.These include compounds with anticancer, antimicrobial, antifungal, antiprotozoal, and antiviral activities.In this review, we summarize the structures and bioactivities of these metabolites to provide help for novel drug development.

View Article: PubMed Central - PubMed

Affiliation: State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University. wangyanting2012@qq.com.

ABSTRACT
Deep-sea fungi, the fungi that inhabit the sea and the sediment at depths of over 1000 m below the surface, have become an important source of industrial, agricultural, and nutraceutical compounds based on their diversities in both structure and function. Since the first study of deep-sea fungi in the Atlantic Ocean at a depth of 4450 m was conducted approximately 50 years ago, hundreds of isolates of deep-sea fungi have been reported based on culture-dependent methods. To date more than 180 bioactive secondary metabolites derived from deep-sea fungi have been documented in the literature. These include compounds with anticancer, antimicrobial, antifungal, antiprotozoal, and antiviral activities. In this review, we summarize the structures and bioactivities of these metabolites to provide help for novel drug development.

No MeSH data available.


Chemical structures of compounds 104–113.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4556995&req=5

marinedrugs-13-04594-f017: Chemical structures of compounds 104–113.

Mentions: Three new breviane spiroditerpenoids, breviones I–K (104–106), and the known breviones (107–110) (Figure 17) have been isolated from the crude extract of the deep-sea fungus Penicillium sp. and display strong cytotoxic effects against MCF-7 cells (IC50: 7.44–28.4 μM). Compound 106 exhibits cytotoxic activity against A549 cells with IC50 of 32.5 μM [46]. Similar compounds, Breviones F–H (111–113) (Figure 17), have been isolated from the same fungal species by Li et al. (2009) [61]. These compounds (111–113) show 25.2%–44.9% cytotoxicity against HeLa at 10 μg/mL. Particularly, compound 111 displays a very strong cytotoxicity to HIV-1 replication in C8166 cells with an EC50 of 14.7 μM [61].


A Brief Review of Bioactive Metabolites Derived from Deep-Sea Fungi.

Wang YT, Xue YR, Liu CH - Mar Drugs (2015)

Chemical structures of compounds 104–113.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4556995&req=5

marinedrugs-13-04594-f017: Chemical structures of compounds 104–113.
Mentions: Three new breviane spiroditerpenoids, breviones I–K (104–106), and the known breviones (107–110) (Figure 17) have been isolated from the crude extract of the deep-sea fungus Penicillium sp. and display strong cytotoxic effects against MCF-7 cells (IC50: 7.44–28.4 μM). Compound 106 exhibits cytotoxic activity against A549 cells with IC50 of 32.5 μM [46]. Similar compounds, Breviones F–H (111–113) (Figure 17), have been isolated from the same fungal species by Li et al. (2009) [61]. These compounds (111–113) show 25.2%–44.9% cytotoxicity against HeLa at 10 μg/mL. Particularly, compound 111 displays a very strong cytotoxicity to HIV-1 replication in C8166 cells with an EC50 of 14.7 μM [61].

Bottom Line: To date more than 180 bioactive secondary metabolites derived from deep-sea fungi have been documented in the literature.These include compounds with anticancer, antimicrobial, antifungal, antiprotozoal, and antiviral activities.In this review, we summarize the structures and bioactivities of these metabolites to provide help for novel drug development.

View Article: PubMed Central - PubMed

Affiliation: State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University. wangyanting2012@qq.com.

ABSTRACT
Deep-sea fungi, the fungi that inhabit the sea and the sediment at depths of over 1000 m below the surface, have become an important source of industrial, agricultural, and nutraceutical compounds based on their diversities in both structure and function. Since the first study of deep-sea fungi in the Atlantic Ocean at a depth of 4450 m was conducted approximately 50 years ago, hundreds of isolates of deep-sea fungi have been reported based on culture-dependent methods. To date more than 180 bioactive secondary metabolites derived from deep-sea fungi have been documented in the literature. These include compounds with anticancer, antimicrobial, antifungal, antiprotozoal, and antiviral activities. In this review, we summarize the structures and bioactivities of these metabolites to provide help for novel drug development.

No MeSH data available.