Limits...
A study of chlorinated solvent contamination of the aquifers of an industrial area in central Italy: a possibility of bioremediation.

Matteucci F, Ercole C, Del Gallo M - Front Microbiol (2015)

Bottom Line: In Italy, there are many situations of serious contamination of groundwater that might compromise their use in industry, agriculture, private, as the critical case of a Central Italy valley located in the province of Teramo ("Val Vibrata"), characterized by a significant chlorinated solvents contamination.Data from the various monitoring campaigns that have taken place over time were collected, and new samplings were carried out, resulting in a complete database.Among the tested electron donors (i.e., yeast extract, lactate, and butyrate) lactate and butyrate enhanced dechlorination of chlorinated compounds.

View Article: PubMed Central - PubMed

Affiliation: Laboratory of Environmental Microbiology, Department of Life, Health and Environmental Sciences, University of L'Aquila L'Aquila, Italy.

ABSTRACT
Perchloroethene, trichloroethene, and other chlorinated solvents are widespread groundwater pollutants. They form dense non-aqueous phase liquids that sink through permeable groundwater aquifers until non-permeable zone is reached. In Italy, there are many situations of serious contamination of groundwater that might compromise their use in industry, agriculture, private, as the critical case of a Central Italy valley located in the province of Teramo ("Val Vibrata"), characterized by a significant chlorinated solvents contamination. Data from the various monitoring campaigns that have taken place over time were collected, and new samplings were carried out, resulting in a complete database. The data matrix was processed with a multivariate statistic analysis (in particular principal component analysis, PCA) and was then imported into geographic information system (GIS), to obtain a model of the contamination. A microcosm anaerobic study was utilized to assess the potential for in situ natural or enhanced bioremediation. Most of the microcosms were positive for dechlorination, particularly those inoculated with a mineral medium. This indicate the presence of an active native dechlorinating population in the subsurface, probably inhibited by co-contaminants in the groundwater, or more likely by the absence or lack of nutritional factors. Among the tested electron donors (i.e., yeast extract, lactate, and butyrate) lactate and butyrate enhanced dechlorination of chlorinated compounds. PCA and GIS studies allowed delimiting the contamination; the microcosm study helped to identify the conditions to promote the bioremediation of the area.

No MeSH data available.


Related in: MedlinePlus

Map of the industrial contaminated area showing wells (indicated with numbers) and coring locations S1, S2, S3, S4, and S5 (the ones used for the microcosms are circled). Bottom right is the Isopieze map: the blue arrows indicate the direction of groundwater flow.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4556989&req=5

Figure 1: Map of the industrial contaminated area showing wells (indicated with numbers) and coring locations S1, S2, S3, S4, and S5 (the ones used for the microcosms are circled). Bottom right is the Isopieze map: the blue arrows indicate the direction of groundwater flow.

Mentions: The sampling site is a large industrial area of a Central Italy valley located in the province of Teramo, morphologically developed between 40 and 75 m a.s.l., and located on a hilly area formed by the terraced alluvial deposits of the river Vibrata. The main industrial activities carried out in the area, present or past, are: the assembly of electronic circuits, sealing and testing of electronic circuits, soldering of electronic components, screen printing, packaging products, manufacturing chemical products for industrial use, textile fasteners, jeans sandblasting, production of leather bags and accessories, manufacture of iron and aluminum, storage truck, washing aggregates, production of burglar and fire alarm systems, leather wash, and wholesale trade in industrial machinery. The whole area is characterized by a significant contamination by chlorinated solvents, PCE and TCE in particular. The piezometric surface has been reconstructed recently. The “isopieze” map (Figure 1) shows that the direction of water flow was a trend toward Southeast.


A study of chlorinated solvent contamination of the aquifers of an industrial area in central Italy: a possibility of bioremediation.

Matteucci F, Ercole C, Del Gallo M - Front Microbiol (2015)

Map of the industrial contaminated area showing wells (indicated with numbers) and coring locations S1, S2, S3, S4, and S5 (the ones used for the microcosms are circled). Bottom right is the Isopieze map: the blue arrows indicate the direction of groundwater flow.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4556989&req=5

Figure 1: Map of the industrial contaminated area showing wells (indicated with numbers) and coring locations S1, S2, S3, S4, and S5 (the ones used for the microcosms are circled). Bottom right is the Isopieze map: the blue arrows indicate the direction of groundwater flow.
Mentions: The sampling site is a large industrial area of a Central Italy valley located in the province of Teramo, morphologically developed between 40 and 75 m a.s.l., and located on a hilly area formed by the terraced alluvial deposits of the river Vibrata. The main industrial activities carried out in the area, present or past, are: the assembly of electronic circuits, sealing and testing of electronic circuits, soldering of electronic components, screen printing, packaging products, manufacturing chemical products for industrial use, textile fasteners, jeans sandblasting, production of leather bags and accessories, manufacture of iron and aluminum, storage truck, washing aggregates, production of burglar and fire alarm systems, leather wash, and wholesale trade in industrial machinery. The whole area is characterized by a significant contamination by chlorinated solvents, PCE and TCE in particular. The piezometric surface has been reconstructed recently. The “isopieze” map (Figure 1) shows that the direction of water flow was a trend toward Southeast.

Bottom Line: In Italy, there are many situations of serious contamination of groundwater that might compromise their use in industry, agriculture, private, as the critical case of a Central Italy valley located in the province of Teramo ("Val Vibrata"), characterized by a significant chlorinated solvents contamination.Data from the various monitoring campaigns that have taken place over time were collected, and new samplings were carried out, resulting in a complete database.Among the tested electron donors (i.e., yeast extract, lactate, and butyrate) lactate and butyrate enhanced dechlorination of chlorinated compounds.

View Article: PubMed Central - PubMed

Affiliation: Laboratory of Environmental Microbiology, Department of Life, Health and Environmental Sciences, University of L'Aquila L'Aquila, Italy.

ABSTRACT
Perchloroethene, trichloroethene, and other chlorinated solvents are widespread groundwater pollutants. They form dense non-aqueous phase liquids that sink through permeable groundwater aquifers until non-permeable zone is reached. In Italy, there are many situations of serious contamination of groundwater that might compromise their use in industry, agriculture, private, as the critical case of a Central Italy valley located in the province of Teramo ("Val Vibrata"), characterized by a significant chlorinated solvents contamination. Data from the various monitoring campaigns that have taken place over time were collected, and new samplings were carried out, resulting in a complete database. The data matrix was processed with a multivariate statistic analysis (in particular principal component analysis, PCA) and was then imported into geographic information system (GIS), to obtain a model of the contamination. A microcosm anaerobic study was utilized to assess the potential for in situ natural or enhanced bioremediation. Most of the microcosms were positive for dechlorination, particularly those inoculated with a mineral medium. This indicate the presence of an active native dechlorinating population in the subsurface, probably inhibited by co-contaminants in the groundwater, or more likely by the absence or lack of nutritional factors. Among the tested electron donors (i.e., yeast extract, lactate, and butyrate) lactate and butyrate enhanced dechlorination of chlorinated compounds. PCA and GIS studies allowed delimiting the contamination; the microcosm study helped to identify the conditions to promote the bioremediation of the area.

No MeSH data available.


Related in: MedlinePlus