Limits...
Transgenic Arabidopsis Plants Expressing Tomato Glutathione S-Transferase Showed Enhanced Resistance to Salt and Drought Stress.

Xu J, Xing XJ, Tian YS, Peng RH, Xue Y, Zhao W, Yao QH - PLoS ONE (2015)

Bottom Line: Transgenic Arabidopsis plants were normal in terms of growth and maturity compared with wild-type plants.The increased tolerance of transgenic plants was correlated with the changes in proline, malondialdehyde and antioxidative emzymes activities.Our results indicated that the gene from tomato plays a positive role in improving tolerance to salinity and drought stresses in Arabidopsis.

View Article: PubMed Central - PubMed

Affiliation: Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China.

ABSTRACT
Although glutathione S-transferases (GST, EC 2.5.1.18) are involved in response to abiotic stress, limited information is available regarding gene function in tomato. In this study, a GST gene from tomato, designated LeGSTU2, was cloned and functionally characterized. Expression profile analysis results showed that it was expressed in roots and flowers, and the transcription was induced by salt, osmotic, and heat stress. The gene was then introduced to Arabidopsis by Agrobacterium tumefaciens-mediated transformation. Transgenic Arabidopsis plants were normal in terms of growth and maturity compared with wild-type plants. Transgenic plants also showed an enhanced resistance to salt and osmotic stress induced by NaCl and mannitol. The increased tolerance of transgenic plants was correlated with the changes in proline, malondialdehyde and antioxidative emzymes activities. Our results indicated that the gene from tomato plays a positive role in improving tolerance to salinity and drought stresses in Arabidopsis.

No MeSH data available.


Related in: MedlinePlus

Response of LeGSTU2 transgenic plants to salt and osmotic stress.a,b, Seed germination. The germination rates were recorded in MS medium supplemented with different concentration of NaCl (as salt stress) and mannitol (as osmotic stress) during a period from 12 to 96 h after stratification. Each value is the mean ± SD (n = 3) of at least 50 seeds. c,d, Phenotypes and primary root length of different genotype under salt stress (c) and osmotic stress (d). Seeds were germinated on MS medium containing different concentrations of NaCl as salt stress and mannitol as osmotic stress. Photograph was taken after 10 days of germination. Each value is the mean ± SD of at least 50 seedlings. Different letters above bars indicate significant differences (P < 0.05) among different genotypes in the same treatment.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4556630&req=5

pone.0136960.g004: Response of LeGSTU2 transgenic plants to salt and osmotic stress.a,b, Seed germination. The germination rates were recorded in MS medium supplemented with different concentration of NaCl (as salt stress) and mannitol (as osmotic stress) during a period from 12 to 96 h after stratification. Each value is the mean ± SD (n = 3) of at least 50 seeds. c,d, Phenotypes and primary root length of different genotype under salt stress (c) and osmotic stress (d). Seeds were germinated on MS medium containing different concentrations of NaCl as salt stress and mannitol as osmotic stress. Photograph was taken after 10 days of germination. Each value is the mean ± SD of at least 50 seedlings. Different letters above bars indicate significant differences (P < 0.05) among different genotypes in the same treatment.

Mentions: Transgenic Arabidopsis lines over-expressing LeGSTU2 gene were germinated in medium containing different concentrations of NaCl (150 and 200mM) as salt stress or Mannitol (150 and 300mM) as osmotic stress to analyze the role of LeGSTU2 under stress. There was no significant difference in the germination rates and root length between WT and transgenic plants under normal growth conditions. However, the germination rate and root length were increased in the transgenic lines compared with WT under salt and osmotic stress conditions (Fig 4). Under salt stress, the average germination rates of transgenic seedlings were 93.5%, 63.4%, compared with 68.9%, 29.4% of the WT in the medium (96h) containing 100 and 150 mM NaCl, respectively (Fig 4A). Under 300 mM mannitol stress conditions, the germination rate of WT was 68.6%, while the average germination rate of transgenic plants was 96.5% (Fig 4B).


Transgenic Arabidopsis Plants Expressing Tomato Glutathione S-Transferase Showed Enhanced Resistance to Salt and Drought Stress.

Xu J, Xing XJ, Tian YS, Peng RH, Xue Y, Zhao W, Yao QH - PLoS ONE (2015)

Response of LeGSTU2 transgenic plants to salt and osmotic stress.a,b, Seed germination. The germination rates were recorded in MS medium supplemented with different concentration of NaCl (as salt stress) and mannitol (as osmotic stress) during a period from 12 to 96 h after stratification. Each value is the mean ± SD (n = 3) of at least 50 seeds. c,d, Phenotypes and primary root length of different genotype under salt stress (c) and osmotic stress (d). Seeds were germinated on MS medium containing different concentrations of NaCl as salt stress and mannitol as osmotic stress. Photograph was taken after 10 days of germination. Each value is the mean ± SD of at least 50 seedlings. Different letters above bars indicate significant differences (P < 0.05) among different genotypes in the same treatment.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4556630&req=5

pone.0136960.g004: Response of LeGSTU2 transgenic plants to salt and osmotic stress.a,b, Seed germination. The germination rates were recorded in MS medium supplemented with different concentration of NaCl (as salt stress) and mannitol (as osmotic stress) during a period from 12 to 96 h after stratification. Each value is the mean ± SD (n = 3) of at least 50 seeds. c,d, Phenotypes and primary root length of different genotype under salt stress (c) and osmotic stress (d). Seeds were germinated on MS medium containing different concentrations of NaCl as salt stress and mannitol as osmotic stress. Photograph was taken after 10 days of germination. Each value is the mean ± SD of at least 50 seedlings. Different letters above bars indicate significant differences (P < 0.05) among different genotypes in the same treatment.
Mentions: Transgenic Arabidopsis lines over-expressing LeGSTU2 gene were germinated in medium containing different concentrations of NaCl (150 and 200mM) as salt stress or Mannitol (150 and 300mM) as osmotic stress to analyze the role of LeGSTU2 under stress. There was no significant difference in the germination rates and root length between WT and transgenic plants under normal growth conditions. However, the germination rate and root length were increased in the transgenic lines compared with WT under salt and osmotic stress conditions (Fig 4). Under salt stress, the average germination rates of transgenic seedlings were 93.5%, 63.4%, compared with 68.9%, 29.4% of the WT in the medium (96h) containing 100 and 150 mM NaCl, respectively (Fig 4A). Under 300 mM mannitol stress conditions, the germination rate of WT was 68.6%, while the average germination rate of transgenic plants was 96.5% (Fig 4B).

Bottom Line: Transgenic Arabidopsis plants were normal in terms of growth and maturity compared with wild-type plants.The increased tolerance of transgenic plants was correlated with the changes in proline, malondialdehyde and antioxidative emzymes activities.Our results indicated that the gene from tomato plays a positive role in improving tolerance to salinity and drought stresses in Arabidopsis.

View Article: PubMed Central - PubMed

Affiliation: Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China.

ABSTRACT
Although glutathione S-transferases (GST, EC 2.5.1.18) are involved in response to abiotic stress, limited information is available regarding gene function in tomato. In this study, a GST gene from tomato, designated LeGSTU2, was cloned and functionally characterized. Expression profile analysis results showed that it was expressed in roots and flowers, and the transcription was induced by salt, osmotic, and heat stress. The gene was then introduced to Arabidopsis by Agrobacterium tumefaciens-mediated transformation. Transgenic Arabidopsis plants were normal in terms of growth and maturity compared with wild-type plants. Transgenic plants also showed an enhanced resistance to salt and osmotic stress induced by NaCl and mannitol. The increased tolerance of transgenic plants was correlated with the changes in proline, malondialdehyde and antioxidative emzymes activities. Our results indicated that the gene from tomato plays a positive role in improving tolerance to salinity and drought stresses in Arabidopsis.

No MeSH data available.


Related in: MedlinePlus