Limits...
Short-Term Fidelity, Habitat Use and Vertical Movement Behavior of the Black Rockfish Sebastes schlegelii as Determined by Acoustic Telemetry.

Zhang Y, Xu Q, Alós J, Liu H, Xu Q, Yang H - PLoS ONE (2015)

Bottom Line: The preference of this species for the artificial reefs that were recently deployed in the study area suggests that artificial seascapes may be effective management tools to attract individuals.The vertical movement of tagged S. schlegelii was mostly characterized by bottom dwelling behavior, and there was high individual variability in the vertical migration pattern.Our results have important implications for S. schlegelii catchability, the implementation of marine protected areas, and the identification of key species habitats, and our study provides novel information for future studies on the sustainability of this important marine resource in eastern China.

View Article: PubMed Central - PubMed

Affiliation: Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; University of Chinese Academy of Sciences, Beijing, China.

ABSTRACT
The recent miniaturization of acoustic tracking devices has allowed fishery managers and scientists to collect spatial and temporal data for sustainable fishery management. The spatial and temporal dimensions of fish behavior (movement and/or vertical migrations) are particularly relevant for rockfishes (Sebastes spp.) because most rockfish species are long-lived and have high site fidelity, increasing their vulnerability to overexploitation. In this study, we describe the short-term (with a tracking period of up to 46 d) spatial behavior, as determined by acoustic tracking, of the black rockfish Sebastes schlegelii, a species subject to overexploitation in the Yellow Sea of China. The average residence index (the ratio of detected days to the total period from release to the last detection) in the study area was 0.92 ± 0.13, and most of the tagged fish were detected by only one region of the acoustic receiver array, suggesting relatively high site fidelity to the study area. Acoustic tracking also suggested that this species is more frequently detected during the day than at night in our study area. However, the diel detection periodicity (24 h) was only evident for certain periods of the tracking time, as revealed by a continuous wavelet transform. The habitat selection index of tagged S. schlegelii suggested that S. schlegelii preferred natural reefs, mixed sand/artificial reef bottoms and mixed bottoms of boulder, cobble, gravel and artificial reefs. The preference of this species for the artificial reefs that were recently deployed in the study area suggests that artificial seascapes may be effective management tools to attract individuals. The vertical movement of tagged S. schlegelii was mostly characterized by bottom dwelling behavior, and there was high individual variability in the vertical migration pattern. Our results have important implications for S. schlegelii catchability, the implementation of marine protected areas, and the identification of key species habitats, and our study provides novel information for future studies on the sustainability of this important marine resource in eastern China.

No MeSH data available.


Related in: MedlinePlus

The study area location, habitat types, the tag wrapping method and the receiver mooring system.(a) The location of Haizhou Bay in the Yellow Sea. (b) The location of study area. (c) Bottom habitat types around Ping Island and detecting range of receivers. (d) Cement reef. (e)-(f) Sunken steel vessels. (g) Sunken wooden vessel. (h) The acoustic receiver array deployment, receiver positions and detecting range, the fish release positions and depth range (m) around Ping Island. (i)-(j) Two S. schlegelii captured via hook and line by local fishermen. (k) The wrapping method for attachment of the acoustic tags and (l) The omnidirectional receiver and the mooring system. In panel (c), the halos around receivers represent a 250-m detection radius, and 3 receivers (R04, R10 and R11) without halo were lost. Habitat are named as seagrass at rocky bottom dominated by Sargassum sp. (SA), natural reef (NR), boulder, cobble and gravel bottoms (BCG), sandy bottom (SB), cement reef at cobble bottom (CRC), cement reef at sandy bottom (CRS), sunken steel vessel at cobble bottom (SVC), sunken steel vessel at sandy bottom (SVS) and sunken wooden vessel at sandy bottom (WVS).
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4556453&req=5

pone.0134381.g001: The study area location, habitat types, the tag wrapping method and the receiver mooring system.(a) The location of Haizhou Bay in the Yellow Sea. (b) The location of study area. (c) Bottom habitat types around Ping Island and detecting range of receivers. (d) Cement reef. (e)-(f) Sunken steel vessels. (g) Sunken wooden vessel. (h) The acoustic receiver array deployment, receiver positions and detecting range, the fish release positions and depth range (m) around Ping Island. (i)-(j) Two S. schlegelii captured via hook and line by local fishermen. (k) The wrapping method for attachment of the acoustic tags and (l) The omnidirectional receiver and the mooring system. In panel (c), the halos around receivers represent a 250-m detection radius, and 3 receivers (R04, R10 and R11) without halo were lost. Habitat are named as seagrass at rocky bottom dominated by Sargassum sp. (SA), natural reef (NR), boulder, cobble and gravel bottoms (BCG), sandy bottom (SB), cement reef at cobble bottom (CRC), cement reef at sandy bottom (CRS), sunken steel vessel at cobble bottom (SVC), sunken steel vessel at sandy bottom (SVS) and sunken wooden vessel at sandy bottom (WVS).

Mentions: We performed an acoustic tracking experiment in the Qiansan Islets, a collection of three small islands in Haizhou Bay in the central Yellow Sea, Northwest Pacific Ocean (see Fig 1). Our study was centered around Ping Island (Fig 1), the largest islet of the Qiansan Islets. Our study area covered the depth from the water surface of Ping Island to 38 m, and included different types of S. schlegelii natural habitats: natural reefs and a mixture of kelp beds, gravel-cobble bottoms and sandy substrates (Fig 1). Local authorities have submerged large rocks, cement reefs, barge boats and fishing vessels to create artificial habitats to enhance marine stocks around the Qiansan Islets [51] (see Fig 1), and an MPA was created. The marine reserve surrounding Ping Island is the largest reserve within this MPA. We characterized the depth (m) of the study area using a multi-beam sounding system (see S1 Fig). The bottom substrate type was determined using an EdgeTech 4100 Side Scan Sonar System (EdgeTech, Massachusetts, USA) at 500 kHz (S2 Fig). The bottom types were further validated by the video surveys of the SeaBotix LBV150-4 (Teledyne SeaBotix, California, USA) and the dive operated stereo-video system (stereo-DOV) [47]. Video examples of the bottom types are provided in S1–S7 Videos. The spatial coverage of seagrass was quantified by a Simrad EY60 split-beam device run at 200 kHz along closely spaced routes parallel to the shelf in the shallow waters of the Qiansan Islets (< 20 m deep, see S3 Fig for visualization of the trajectory), and the results suggested that the seagrass was mainly distributed in shallower waters < 15 m deep (Fig 1 (C)). In general, the Qiansan Islets are dominated by a semi-diurnal tide, with a southwest-oriented flood current and a northeast-oriented ebb current at Ping Island (for more details, see [55,56]).


Short-Term Fidelity, Habitat Use and Vertical Movement Behavior of the Black Rockfish Sebastes schlegelii as Determined by Acoustic Telemetry.

Zhang Y, Xu Q, Alós J, Liu H, Xu Q, Yang H - PLoS ONE (2015)

The study area location, habitat types, the tag wrapping method and the receiver mooring system.(a) The location of Haizhou Bay in the Yellow Sea. (b) The location of study area. (c) Bottom habitat types around Ping Island and detecting range of receivers. (d) Cement reef. (e)-(f) Sunken steel vessels. (g) Sunken wooden vessel. (h) The acoustic receiver array deployment, receiver positions and detecting range, the fish release positions and depth range (m) around Ping Island. (i)-(j) Two S. schlegelii captured via hook and line by local fishermen. (k) The wrapping method for attachment of the acoustic tags and (l) The omnidirectional receiver and the mooring system. In panel (c), the halos around receivers represent a 250-m detection radius, and 3 receivers (R04, R10 and R11) without halo were lost. Habitat are named as seagrass at rocky bottom dominated by Sargassum sp. (SA), natural reef (NR), boulder, cobble and gravel bottoms (BCG), sandy bottom (SB), cement reef at cobble bottom (CRC), cement reef at sandy bottom (CRS), sunken steel vessel at cobble bottom (SVC), sunken steel vessel at sandy bottom (SVS) and sunken wooden vessel at sandy bottom (WVS).
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4556453&req=5

pone.0134381.g001: The study area location, habitat types, the tag wrapping method and the receiver mooring system.(a) The location of Haizhou Bay in the Yellow Sea. (b) The location of study area. (c) Bottom habitat types around Ping Island and detecting range of receivers. (d) Cement reef. (e)-(f) Sunken steel vessels. (g) Sunken wooden vessel. (h) The acoustic receiver array deployment, receiver positions and detecting range, the fish release positions and depth range (m) around Ping Island. (i)-(j) Two S. schlegelii captured via hook and line by local fishermen. (k) The wrapping method for attachment of the acoustic tags and (l) The omnidirectional receiver and the mooring system. In panel (c), the halos around receivers represent a 250-m detection radius, and 3 receivers (R04, R10 and R11) without halo were lost. Habitat are named as seagrass at rocky bottom dominated by Sargassum sp. (SA), natural reef (NR), boulder, cobble and gravel bottoms (BCG), sandy bottom (SB), cement reef at cobble bottom (CRC), cement reef at sandy bottom (CRS), sunken steel vessel at cobble bottom (SVC), sunken steel vessel at sandy bottom (SVS) and sunken wooden vessel at sandy bottom (WVS).
Mentions: We performed an acoustic tracking experiment in the Qiansan Islets, a collection of three small islands in Haizhou Bay in the central Yellow Sea, Northwest Pacific Ocean (see Fig 1). Our study was centered around Ping Island (Fig 1), the largest islet of the Qiansan Islets. Our study area covered the depth from the water surface of Ping Island to 38 m, and included different types of S. schlegelii natural habitats: natural reefs and a mixture of kelp beds, gravel-cobble bottoms and sandy substrates (Fig 1). Local authorities have submerged large rocks, cement reefs, barge boats and fishing vessels to create artificial habitats to enhance marine stocks around the Qiansan Islets [51] (see Fig 1), and an MPA was created. The marine reserve surrounding Ping Island is the largest reserve within this MPA. We characterized the depth (m) of the study area using a multi-beam sounding system (see S1 Fig). The bottom substrate type was determined using an EdgeTech 4100 Side Scan Sonar System (EdgeTech, Massachusetts, USA) at 500 kHz (S2 Fig). The bottom types were further validated by the video surveys of the SeaBotix LBV150-4 (Teledyne SeaBotix, California, USA) and the dive operated stereo-video system (stereo-DOV) [47]. Video examples of the bottom types are provided in S1–S7 Videos. The spatial coverage of seagrass was quantified by a Simrad EY60 split-beam device run at 200 kHz along closely spaced routes parallel to the shelf in the shallow waters of the Qiansan Islets (< 20 m deep, see S3 Fig for visualization of the trajectory), and the results suggested that the seagrass was mainly distributed in shallower waters < 15 m deep (Fig 1 (C)). In general, the Qiansan Islets are dominated by a semi-diurnal tide, with a southwest-oriented flood current and a northeast-oriented ebb current at Ping Island (for more details, see [55,56]).

Bottom Line: The preference of this species for the artificial reefs that were recently deployed in the study area suggests that artificial seascapes may be effective management tools to attract individuals.The vertical movement of tagged S. schlegelii was mostly characterized by bottom dwelling behavior, and there was high individual variability in the vertical migration pattern.Our results have important implications for S. schlegelii catchability, the implementation of marine protected areas, and the identification of key species habitats, and our study provides novel information for future studies on the sustainability of this important marine resource in eastern China.

View Article: PubMed Central - PubMed

Affiliation: Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; University of Chinese Academy of Sciences, Beijing, China.

ABSTRACT
The recent miniaturization of acoustic tracking devices has allowed fishery managers and scientists to collect spatial and temporal data for sustainable fishery management. The spatial and temporal dimensions of fish behavior (movement and/or vertical migrations) are particularly relevant for rockfishes (Sebastes spp.) because most rockfish species are long-lived and have high site fidelity, increasing their vulnerability to overexploitation. In this study, we describe the short-term (with a tracking period of up to 46 d) spatial behavior, as determined by acoustic tracking, of the black rockfish Sebastes schlegelii, a species subject to overexploitation in the Yellow Sea of China. The average residence index (the ratio of detected days to the total period from release to the last detection) in the study area was 0.92 ± 0.13, and most of the tagged fish were detected by only one region of the acoustic receiver array, suggesting relatively high site fidelity to the study area. Acoustic tracking also suggested that this species is more frequently detected during the day than at night in our study area. However, the diel detection periodicity (24 h) was only evident for certain periods of the tracking time, as revealed by a continuous wavelet transform. The habitat selection index of tagged S. schlegelii suggested that S. schlegelii preferred natural reefs, mixed sand/artificial reef bottoms and mixed bottoms of boulder, cobble, gravel and artificial reefs. The preference of this species for the artificial reefs that were recently deployed in the study area suggests that artificial seascapes may be effective management tools to attract individuals. The vertical movement of tagged S. schlegelii was mostly characterized by bottom dwelling behavior, and there was high individual variability in the vertical migration pattern. Our results have important implications for S. schlegelii catchability, the implementation of marine protected areas, and the identification of key species habitats, and our study provides novel information for future studies on the sustainability of this important marine resource in eastern China.

No MeSH data available.


Related in: MedlinePlus