Limits...
Clinical utility of platinum chromium bare-metal stents in coronary heart disease.

Jorge C, Dubois C - Med Devices (Auckl) (2015)

Bottom Line: Later, cobalt chromium stent alloys outperformed steel as the material of choice for stents, allowing latest generation stents to be designed with significantly thinner struts, while maintaining corrosion resistance and radial strength.Most recently, the introduction of the platinum chromium alloy refined stent architecture with thin struts, high radial strength, conformability, and improved radiopacity.Mechanical properties, clinical utility, and device limitations will be summarized and put into perspective.

View Article: PubMed Central - PubMed

Affiliation: Department of Cardiovascular Medicine, University Hospitals Leuven, Leuven, Belgium.

ABSTRACT
Coronary stents represent a key development for the treatment of obstructive coronary artery disease since the introduction of percutaneous coronary intervention. While drug-eluting stents gained wide acceptance in contemporary percutaneous coronary intervention practice, further developments in bare-metal stents remain crucial for patients who are not candidates for drug-eluting stents, or to improve metallic platforms for drug elution. Initially, stent platforms used biologically inert stainless steel, restricting stent performance due to limitations in flexibility and strut thickness. Later, cobalt chromium stent alloys outperformed steel as the material of choice for stents, allowing latest generation stents to be designed with significantly thinner struts, while maintaining corrosion resistance and radial strength. Most recently, the introduction of the platinum chromium alloy refined stent architecture with thin struts, high radial strength, conformability, and improved radiopacity. This review will provide an overview of the novel platinum chromium bare-metal stent platforms available for coronary intervention. Mechanical properties, clinical utility, and device limitations will be summarized and put into perspective.

No MeSH data available.


Related in: MedlinePlus

PtCr stent models according to vessel size.Notes: Four separate stent models were developed to optimize the surface-to-artery ratio over the range of coronary vessel diameters and provide more uniform scaffolding (small vessel, small workhorse, workhorse, and large vessel). In the left image panels, circular cell diameter (red closed circles) is shown to increase with larger models, providing easy side-branch access. The right image panels represent a graphic drawing of each available size model, showing the adapted design and added connectors at the proximal stent end in the Rebel/Promus Premier version. The red open circles highlight the additional connectors to increase longitudinal robustness. In these improved designs, workhorse stent models have eight connectors proximally, and large vessel models 10. More distal stent segments are unchanged with two connectors between stent segments.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4556305&req=5

f3-mder-8-359: PtCr stent models according to vessel size.Notes: Four separate stent models were developed to optimize the surface-to-artery ratio over the range of coronary vessel diameters and provide more uniform scaffolding (small vessel, small workhorse, workhorse, and large vessel). In the left image panels, circular cell diameter (red closed circles) is shown to increase with larger models, providing easy side-branch access. The right image panels represent a graphic drawing of each available size model, showing the adapted design and added connectors at the proximal stent end in the Rebel/Promus Premier version. The red open circles highlight the additional connectors to increase longitudinal robustness. In these improved designs, workhorse stent models have eight connectors proximally, and large vessel models 10. More distal stent segments are unchanged with two connectors between stent segments.

Mentions: In contrast with most other latest generation stents, often available in two models mounted on a wider range of balloon sizes, the Element stent platform was developed in four sizes to accommodate for an optimal surface-to-artery ratio (Figure 3).23,25 Such tailored design reduces the risk of plaque prolapse, by allowing more uniform scaffolding and contact with the vessel wall, hereby insuring a uniform drug release. The smaller 2.25 mm model stent has even a more individualized design with shorter (and thus more) segments per stent as compared with the larger diameter models as well as a lower system profile, optimizing the conformability and deliverability in small and often more tortuous vessels.23


Clinical utility of platinum chromium bare-metal stents in coronary heart disease.

Jorge C, Dubois C - Med Devices (Auckl) (2015)

PtCr stent models according to vessel size.Notes: Four separate stent models were developed to optimize the surface-to-artery ratio over the range of coronary vessel diameters and provide more uniform scaffolding (small vessel, small workhorse, workhorse, and large vessel). In the left image panels, circular cell diameter (red closed circles) is shown to increase with larger models, providing easy side-branch access. The right image panels represent a graphic drawing of each available size model, showing the adapted design and added connectors at the proximal stent end in the Rebel/Promus Premier version. The red open circles highlight the additional connectors to increase longitudinal robustness. In these improved designs, workhorse stent models have eight connectors proximally, and large vessel models 10. More distal stent segments are unchanged with two connectors between stent segments.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4556305&req=5

f3-mder-8-359: PtCr stent models according to vessel size.Notes: Four separate stent models were developed to optimize the surface-to-artery ratio over the range of coronary vessel diameters and provide more uniform scaffolding (small vessel, small workhorse, workhorse, and large vessel). In the left image panels, circular cell diameter (red closed circles) is shown to increase with larger models, providing easy side-branch access. The right image panels represent a graphic drawing of each available size model, showing the adapted design and added connectors at the proximal stent end in the Rebel/Promus Premier version. The red open circles highlight the additional connectors to increase longitudinal robustness. In these improved designs, workhorse stent models have eight connectors proximally, and large vessel models 10. More distal stent segments are unchanged with two connectors between stent segments.
Mentions: In contrast with most other latest generation stents, often available in two models mounted on a wider range of balloon sizes, the Element stent platform was developed in four sizes to accommodate for an optimal surface-to-artery ratio (Figure 3).23,25 Such tailored design reduces the risk of plaque prolapse, by allowing more uniform scaffolding and contact with the vessel wall, hereby insuring a uniform drug release. The smaller 2.25 mm model stent has even a more individualized design with shorter (and thus more) segments per stent as compared with the larger diameter models as well as a lower system profile, optimizing the conformability and deliverability in small and often more tortuous vessels.23

Bottom Line: Later, cobalt chromium stent alloys outperformed steel as the material of choice for stents, allowing latest generation stents to be designed with significantly thinner struts, while maintaining corrosion resistance and radial strength.Most recently, the introduction of the platinum chromium alloy refined stent architecture with thin struts, high radial strength, conformability, and improved radiopacity.Mechanical properties, clinical utility, and device limitations will be summarized and put into perspective.

View Article: PubMed Central - PubMed

Affiliation: Department of Cardiovascular Medicine, University Hospitals Leuven, Leuven, Belgium.

ABSTRACT
Coronary stents represent a key development for the treatment of obstructive coronary artery disease since the introduction of percutaneous coronary intervention. While drug-eluting stents gained wide acceptance in contemporary percutaneous coronary intervention practice, further developments in bare-metal stents remain crucial for patients who are not candidates for drug-eluting stents, or to improve metallic platforms for drug elution. Initially, stent platforms used biologically inert stainless steel, restricting stent performance due to limitations in flexibility and strut thickness. Later, cobalt chromium stent alloys outperformed steel as the material of choice for stents, allowing latest generation stents to be designed with significantly thinner struts, while maintaining corrosion resistance and radial strength. Most recently, the introduction of the platinum chromium alloy refined stent architecture with thin struts, high radial strength, conformability, and improved radiopacity. This review will provide an overview of the novel platinum chromium bare-metal stent platforms available for coronary intervention. Mechanical properties, clinical utility, and device limitations will be summarized and put into perspective.

No MeSH data available.


Related in: MedlinePlus