Limits...
Typology of person-environment fit constellations: a platform addressing accessibility problems in the built environment for people with functional limitations.

Slaug B, Schilling O, Iwarsson S, Carlsson G - BMC Public Health (2015)

Bottom Line: As a result of the classification of the HE components, 48 typical person-environment fit constellations were recognised.Its link to the globally accepted ICF classification system facilitates communication within the scientific and health care practice communities.The typology also highlights how relations between aspects of functioning and physical environmental barriers generate typical accessibility problems, and thereby furnishes a reference point for research oriented to how the built environment may be designed to be supportive for activity, participation and health.

View Article: PubMed Central - PubMed

Affiliation: Department of Health Sciences, Faculty of Medicine, Lund University, Box 157 SE-221 00, Lund, Sweden. bjorn.slaug@med.lu.se.

ABSTRACT

Background: Making the built environment accessible for all regardless of functional capacity is an important goal for public health efforts. Considerable impediments to achieving this goal suggest the need for valid measurements of acccessibility and for greater attention to the complexity of person-environment fit issues. To address these needs, this study aimed to provide a methodological platform, useful for further research and instrument development within accessibility research. This was accomplished by the construction of a typology of problematic person-environment fit constellations, utilizing an existing methodology developed to assess and analyze accessibility problems in the built environment.

Methods: By means of qualitative review and statistical methods we classified the person-environment fit components covered by an existing application which targets housing accessibility: the Housing Enabler (HE) instrument. The International Classification of Functioning, Disability and Health (ICF) was used as a conceptual framework. Qualitative classification principles were based on conceptual similarities and for quantitative analysis of similarities, Principal Component Analysis was carried out.

Results: We present a typology of problematic person-environment fit constellations classified along three dimensions: 1) accessibility problem range and severity 2) aspects of functioning 3) environmental context. As a result of the classification of the HE components, 48 typical person-environment fit constellations were recognised.

Conclusions: The main contribution of this study is the proposed typology of person-environment fit constellations. The typology provides a methodological platform for the identification and quantification of problematic person-environment fit constellations. Its link to the globally accepted ICF classification system facilitates communication within the scientific and health care practice communities. The typology also highlights how relations between aspects of functioning and physical environmental barriers generate typical accessibility problems, and thereby furnishes a reference point for research oriented to how the built environment may be designed to be supportive for activity, participation and health.

No MeSH data available.


Flowchart showing the classification procedures used in order to construct the typology of person-environment fit constellations. For more details of the generation of the pre-defined scoring patterns, see [9], and for an overview of the continuous validation process, see [13]
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC4556195&req=5

Fig1: Flowchart showing the classification procedures used in order to construct the typology of person-environment fit constellations. For more details of the generation of the pre-defined scoring patterns, see [9], and for an overview of the continuous validation process, see [13]

Mentions: The scoring positions of the patterns are graded from 0 to 4 (0 = no problem, 1 = potential problem, 2 = problem, 3 = severe problem, 4 = impossibility). When constructing the typology the scoring patterns and the pool of the 161 environmental barrier specifications constituted the data to be classified. That is, we did not use any empirical data but only the content and scoring system of the HE instrument. For an overview of how we proceeded to construct the typology, see Fig. 1.Fig. 1


Typology of person-environment fit constellations: a platform addressing accessibility problems in the built environment for people with functional limitations.

Slaug B, Schilling O, Iwarsson S, Carlsson G - BMC Public Health (2015)

Flowchart showing the classification procedures used in order to construct the typology of person-environment fit constellations. For more details of the generation of the pre-defined scoring patterns, see [9], and for an overview of the continuous validation process, see [13]
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC4556195&req=5

Fig1: Flowchart showing the classification procedures used in order to construct the typology of person-environment fit constellations. For more details of the generation of the pre-defined scoring patterns, see [9], and for an overview of the continuous validation process, see [13]
Mentions: The scoring positions of the patterns are graded from 0 to 4 (0 = no problem, 1 = potential problem, 2 = problem, 3 = severe problem, 4 = impossibility). When constructing the typology the scoring patterns and the pool of the 161 environmental barrier specifications constituted the data to be classified. That is, we did not use any empirical data but only the content and scoring system of the HE instrument. For an overview of how we proceeded to construct the typology, see Fig. 1.Fig. 1

Bottom Line: As a result of the classification of the HE components, 48 typical person-environment fit constellations were recognised.Its link to the globally accepted ICF classification system facilitates communication within the scientific and health care practice communities.The typology also highlights how relations between aspects of functioning and physical environmental barriers generate typical accessibility problems, and thereby furnishes a reference point for research oriented to how the built environment may be designed to be supportive for activity, participation and health.

View Article: PubMed Central - PubMed

Affiliation: Department of Health Sciences, Faculty of Medicine, Lund University, Box 157 SE-221 00, Lund, Sweden. bjorn.slaug@med.lu.se.

ABSTRACT

Background: Making the built environment accessible for all regardless of functional capacity is an important goal for public health efforts. Considerable impediments to achieving this goal suggest the need for valid measurements of acccessibility and for greater attention to the complexity of person-environment fit issues. To address these needs, this study aimed to provide a methodological platform, useful for further research and instrument development within accessibility research. This was accomplished by the construction of a typology of problematic person-environment fit constellations, utilizing an existing methodology developed to assess and analyze accessibility problems in the built environment.

Methods: By means of qualitative review and statistical methods we classified the person-environment fit components covered by an existing application which targets housing accessibility: the Housing Enabler (HE) instrument. The International Classification of Functioning, Disability and Health (ICF) was used as a conceptual framework. Qualitative classification principles were based on conceptual similarities and for quantitative analysis of similarities, Principal Component Analysis was carried out.

Results: We present a typology of problematic person-environment fit constellations classified along three dimensions: 1) accessibility problem range and severity 2) aspects of functioning 3) environmental context. As a result of the classification of the HE components, 48 typical person-environment fit constellations were recognised.

Conclusions: The main contribution of this study is the proposed typology of person-environment fit constellations. The typology provides a methodological platform for the identification and quantification of problematic person-environment fit constellations. Its link to the globally accepted ICF classification system facilitates communication within the scientific and health care practice communities. The typology also highlights how relations between aspects of functioning and physical environmental barriers generate typical accessibility problems, and thereby furnishes a reference point for research oriented to how the built environment may be designed to be supportive for activity, participation and health.

No MeSH data available.