Limits...
The care.data consensus? A qualitative analysis of opinions expressed on Twitter.

Hays R, Daker-White G - BMC Public Health (2015)

Bottom Line: Our findings also highlight the risks of not considering public opinion, such as the potential for patient safety failures resulting from a lack of trust in the healthcare system.However, caution is advised if using Twitter as a stand-alone data source, as contributors may lie more heavily on one side of a debate than another.A mixed-methods approach would have enabled us to complement this data with a more representative overview.

View Article: PubMed Central - PubMed

Affiliation: NIHR Greater Manchester Primary Care Patient Safety Translational Research Centre (PSTRC), Manchester Academic Health Science Centre, University of Manchester, Williamson Building, Oxford Road, Manchester, UK. rebecca.hays@manchester.ac.uk.

ABSTRACT

Background: Large, integrated datasets can be used to improve the identification and management of health conditions. However, big data initiatives are controversial because of risks to privacy. In 2014, NHS England launched a public awareness campaign about the care.data project, whereby data from patients' medical records would be regularly uploaded to a central database. Details of the project sparked intense debate across a number of platforms, including social media sites such as Twitter. Twitter is increasingly being used to educate and inform patients and care providers, and as a source of data for health services research. The aim of the study was to identify and describe the range of opinions expressed about care.data on Twitter for the period during which a delay to this project was announced, and provide insight into the strengths and flaws of the project.

Methods: Tweets with the hashtag #caredata were collected using the NCapture tool for NVivo. Methods of qualitative data analysis were used to identify emerging themes. Tweets were coded and analysed in-depth within and across themes.

Results: The dataset consisted of 9895 tweets, captured over 18 days during February and March 2014. Retweets (6118, 62%) and spam (240, 2%) were excluded. The remaining 3537 tweets were posted by 904 contributors, and coded into one or more of 50 sub-themes, which were organised into 9 key themes. These were: informed consent and the default 'opt-in', trust, privacy and data security, involvement of private companies, legal issues and GPs' concerns, communication failure and confusion about care.data, delayed implementation, patient-centeredness, and potential of care.data and the ideal model of implementation.

Conclusions: Various concerns were raised about care.data that appeared to be shared by those both for and against the project. Qualitatively analysing tweets enabled us to identify a range of concerns about care.data and how these might be overcome, for example, by increasing the involvement of stakeholders and those with expert knowledge. Our findings also highlight the risks of not considering public opinion, such as the potential for patient safety failures resulting from a lack of trust in the healthcare system. However, caution is advised if using Twitter as a stand-alone data source, as contributors may lie more heavily on one side of a debate than another. A mixed-methods approach would have enabled us to complement this data with a more representative overview.

No MeSH data available.


Related in: MedlinePlus

Conceptual map of key themes from Twitter discourse about care.data
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC4556193&req=5

Fig2: Conceptual map of key themes from Twitter discourse about care.data

Mentions: The concerns of Twitter users were all interlinked and we have attempted to show how in a conceptual model, which has the delayed implementation of the project at its heart (see Fig. 2). Contributor perceptions of privacy and data security were influenced by their views on the involvement of private companies in terms of the provision of the technology and resources to support the project or their ability to access the records in the database. In addition to these concerns, some felt it would only be acceptable to collect and share fully anonymised data because of the potential to re-identify individuals and risk their privacy, especially as patients had no control over who their data would be available to during the process of data collection and management or afterwards, as they could only stay in or entirely opt-out of the project. The legality of the project was also questioned in relation to the Data Protection Act and GPs had concerns about the availability of the technology required to pseudo-anonymise data before it leaves the GP practice, and the processes that would be put in place to ensure this data was securely transferred and stored.Fig. 2


The care.data consensus? A qualitative analysis of opinions expressed on Twitter.

Hays R, Daker-White G - BMC Public Health (2015)

Conceptual map of key themes from Twitter discourse about care.data
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC4556193&req=5

Fig2: Conceptual map of key themes from Twitter discourse about care.data
Mentions: The concerns of Twitter users were all interlinked and we have attempted to show how in a conceptual model, which has the delayed implementation of the project at its heart (see Fig. 2). Contributor perceptions of privacy and data security were influenced by their views on the involvement of private companies in terms of the provision of the technology and resources to support the project or their ability to access the records in the database. In addition to these concerns, some felt it would only be acceptable to collect and share fully anonymised data because of the potential to re-identify individuals and risk their privacy, especially as patients had no control over who their data would be available to during the process of data collection and management or afterwards, as they could only stay in or entirely opt-out of the project. The legality of the project was also questioned in relation to the Data Protection Act and GPs had concerns about the availability of the technology required to pseudo-anonymise data before it leaves the GP practice, and the processes that would be put in place to ensure this data was securely transferred and stored.Fig. 2

Bottom Line: Our findings also highlight the risks of not considering public opinion, such as the potential for patient safety failures resulting from a lack of trust in the healthcare system.However, caution is advised if using Twitter as a stand-alone data source, as contributors may lie more heavily on one side of a debate than another.A mixed-methods approach would have enabled us to complement this data with a more representative overview.

View Article: PubMed Central - PubMed

Affiliation: NIHR Greater Manchester Primary Care Patient Safety Translational Research Centre (PSTRC), Manchester Academic Health Science Centre, University of Manchester, Williamson Building, Oxford Road, Manchester, UK. rebecca.hays@manchester.ac.uk.

ABSTRACT

Background: Large, integrated datasets can be used to improve the identification and management of health conditions. However, big data initiatives are controversial because of risks to privacy. In 2014, NHS England launched a public awareness campaign about the care.data project, whereby data from patients' medical records would be regularly uploaded to a central database. Details of the project sparked intense debate across a number of platforms, including social media sites such as Twitter. Twitter is increasingly being used to educate and inform patients and care providers, and as a source of data for health services research. The aim of the study was to identify and describe the range of opinions expressed about care.data on Twitter for the period during which a delay to this project was announced, and provide insight into the strengths and flaws of the project.

Methods: Tweets with the hashtag #caredata were collected using the NCapture tool for NVivo. Methods of qualitative data analysis were used to identify emerging themes. Tweets were coded and analysed in-depth within and across themes.

Results: The dataset consisted of 9895 tweets, captured over 18 days during February and March 2014. Retweets (6118, 62%) and spam (240, 2%) were excluded. The remaining 3537 tweets were posted by 904 contributors, and coded into one or more of 50 sub-themes, which were organised into 9 key themes. These were: informed consent and the default 'opt-in', trust, privacy and data security, involvement of private companies, legal issues and GPs' concerns, communication failure and confusion about care.data, delayed implementation, patient-centeredness, and potential of care.data and the ideal model of implementation.

Conclusions: Various concerns were raised about care.data that appeared to be shared by those both for and against the project. Qualitatively analysing tweets enabled us to identify a range of concerns about care.data and how these might be overcome, for example, by increasing the involvement of stakeholders and those with expert knowledge. Our findings also highlight the risks of not considering public opinion, such as the potential for patient safety failures resulting from a lack of trust in the healthcare system. However, caution is advised if using Twitter as a stand-alone data source, as contributors may lie more heavily on one side of a debate than another. A mixed-methods approach would have enabled us to complement this data with a more representative overview.

No MeSH data available.


Related in: MedlinePlus