Limits...
Biomimetic approaches to complex craniofacial defects.

Teven CM, Fisher S, Ameer GA, He TC, Reid RR - Ann Maxillofac Surg (2015 Jan-Jun)

Bottom Line: In the field of regenerative medicine, tissue engineering has emerged as a promising concept, and several methods of bone engineering are currently under investigation.When combined with cell-based and matrix-based models, regenerative goals can be optimized.When sufficient autologous bone is not available, safe and effective strategies to engineer bone would allow the surgeon to meet the reconstructive goals of the craniofacial skeleton.

View Article: PubMed Central - PubMed

Affiliation: Department of Surgery, Section of Plastic and Reconstructive Surgery, University of Chicago Medical Center, Chicago, IL, USA.

ABSTRACT
The primary goals of craniofacial reconstruction include the restoration of the form, function, and facial esthetics, and in the case of pediatric patients, respect for craniofacial growth. The surgeon, however, faces several challenges when attempting a reconstructive cranioplasty. For that reason, craniofacial defect repair often requires sophisticated treatment strategies and multidisciplinary input. In the ideal situation, autologous tissue similar in structure and function to that which is missing can be utilized for repair. In the context of the craniofacial skeleton, autologous cranial bone, or secondarily rib, iliac crest, or scapular bone, is most favorable. Often, this option is limited by the finite supply of available bone. Therefore, alternative strategies to repair craniofacial defects are necessary. In the field of regenerative medicine, tissue engineering has emerged as a promising concept, and several methods of bone engineering are currently under investigation. A growth factor-based approach utilizing bone morphogenetic proteins (BMPs) has demonstrated stimulatory effects on cranial bone and defect repair. When combined with cell-based and matrix-based models, regenerative goals can be optimized. This manuscript intends to review recent investigations of tissue engineering models used for the repair of craniofacial defects with a focus on the role of BMPs, scaffold materials, and novel cell lines. When sufficient autologous bone is not available, safe and effective strategies to engineer bone would allow the surgeon to meet the reconstructive goals of the craniofacial skeleton.

No MeSH data available.


Related in: MedlinePlus

Early evidence suggests that the addition of AdBMP-9 to USCs facilitates induction toward an osteogenic lineage. AdBMP-9: Adenovirus expressing bone morphogenetic protein-9, USCs: Urine-derived stem cells
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4555947&req=5

Figure 4: Early evidence suggests that the addition of AdBMP-9 to USCs facilitates induction toward an osteogenic lineage. AdBMP-9: Adenovirus expressing bone morphogenetic protein-9, USCs: Urine-derived stem cells

Mentions: Human urine-derived stem cells (USCs) have also been identified as an exciting option for cell-based engineering.[112] USCs are easily isolatable from human urine, and single clones are capable of expanding to yield a large population. These cells express a combination of pericyte and MSC markers and have multipotent differential capacity. Indeed, when cultured in osteogenic medium, USCs differentiate down an osteogenic lineage. Because of their promising features, we are currently investigating the ability of AdBMP-9-infected USCs to proliferate and differentiate within a scaffold matrix composed of POC-TCP [Figure 3]. Early in vitro data have demonstrated success with this strategy [Figure 4]. BMP-9, which is thought to be the most osteogenic of the BMP isoforms, has facilitated progression of USCs cultured in scaffolds toward bone forming cells. The current phase of the study will incorporate the implantation of scaffolds containing osteogenically stimulated USCs into craniofacial defect sites to assess whether autologous bone growth occurs in vivo.


Biomimetic approaches to complex craniofacial defects.

Teven CM, Fisher S, Ameer GA, He TC, Reid RR - Ann Maxillofac Surg (2015 Jan-Jun)

Early evidence suggests that the addition of AdBMP-9 to USCs facilitates induction toward an osteogenic lineage. AdBMP-9: Adenovirus expressing bone morphogenetic protein-9, USCs: Urine-derived stem cells
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4555947&req=5

Figure 4: Early evidence suggests that the addition of AdBMP-9 to USCs facilitates induction toward an osteogenic lineage. AdBMP-9: Adenovirus expressing bone morphogenetic protein-9, USCs: Urine-derived stem cells
Mentions: Human urine-derived stem cells (USCs) have also been identified as an exciting option for cell-based engineering.[112] USCs are easily isolatable from human urine, and single clones are capable of expanding to yield a large population. These cells express a combination of pericyte and MSC markers and have multipotent differential capacity. Indeed, when cultured in osteogenic medium, USCs differentiate down an osteogenic lineage. Because of their promising features, we are currently investigating the ability of AdBMP-9-infected USCs to proliferate and differentiate within a scaffold matrix composed of POC-TCP [Figure 3]. Early in vitro data have demonstrated success with this strategy [Figure 4]. BMP-9, which is thought to be the most osteogenic of the BMP isoforms, has facilitated progression of USCs cultured in scaffolds toward bone forming cells. The current phase of the study will incorporate the implantation of scaffolds containing osteogenically stimulated USCs into craniofacial defect sites to assess whether autologous bone growth occurs in vivo.

Bottom Line: In the field of regenerative medicine, tissue engineering has emerged as a promising concept, and several methods of bone engineering are currently under investigation.When combined with cell-based and matrix-based models, regenerative goals can be optimized.When sufficient autologous bone is not available, safe and effective strategies to engineer bone would allow the surgeon to meet the reconstructive goals of the craniofacial skeleton.

View Article: PubMed Central - PubMed

Affiliation: Department of Surgery, Section of Plastic and Reconstructive Surgery, University of Chicago Medical Center, Chicago, IL, USA.

ABSTRACT
The primary goals of craniofacial reconstruction include the restoration of the form, function, and facial esthetics, and in the case of pediatric patients, respect for craniofacial growth. The surgeon, however, faces several challenges when attempting a reconstructive cranioplasty. For that reason, craniofacial defect repair often requires sophisticated treatment strategies and multidisciplinary input. In the ideal situation, autologous tissue similar in structure and function to that which is missing can be utilized for repair. In the context of the craniofacial skeleton, autologous cranial bone, or secondarily rib, iliac crest, or scapular bone, is most favorable. Often, this option is limited by the finite supply of available bone. Therefore, alternative strategies to repair craniofacial defects are necessary. In the field of regenerative medicine, tissue engineering has emerged as a promising concept, and several methods of bone engineering are currently under investigation. A growth factor-based approach utilizing bone morphogenetic proteins (BMPs) has demonstrated stimulatory effects on cranial bone and defect repair. When combined with cell-based and matrix-based models, regenerative goals can be optimized. This manuscript intends to review recent investigations of tissue engineering models used for the repair of craniofacial defects with a focus on the role of BMPs, scaffold materials, and novel cell lines. When sufficient autologous bone is not available, safe and effective strategies to engineer bone would allow the surgeon to meet the reconstructive goals of the craniofacial skeleton.

No MeSH data available.


Related in: MedlinePlus