Limits...
Biomimetic approaches to complex craniofacial defects.

Teven CM, Fisher S, Ameer GA, He TC, Reid RR - Ann Maxillofac Surg (2015 Jan-Jun)

Bottom Line: In the field of regenerative medicine, tissue engineering has emerged as a promising concept, and several methods of bone engineering are currently under investigation.When combined with cell-based and matrix-based models, regenerative goals can be optimized.When sufficient autologous bone is not available, safe and effective strategies to engineer bone would allow the surgeon to meet the reconstructive goals of the craniofacial skeleton.

View Article: PubMed Central - PubMed

Affiliation: Department of Surgery, Section of Plastic and Reconstructive Surgery, University of Chicago Medical Center, Chicago, IL, USA.

ABSTRACT
The primary goals of craniofacial reconstruction include the restoration of the form, function, and facial esthetics, and in the case of pediatric patients, respect for craniofacial growth. The surgeon, however, faces several challenges when attempting a reconstructive cranioplasty. For that reason, craniofacial defect repair often requires sophisticated treatment strategies and multidisciplinary input. In the ideal situation, autologous tissue similar in structure and function to that which is missing can be utilized for repair. In the context of the craniofacial skeleton, autologous cranial bone, or secondarily rib, iliac crest, or scapular bone, is most favorable. Often, this option is limited by the finite supply of available bone. Therefore, alternative strategies to repair craniofacial defects are necessary. In the field of regenerative medicine, tissue engineering has emerged as a promising concept, and several methods of bone engineering are currently under investigation. A growth factor-based approach utilizing bone morphogenetic proteins (BMPs) has demonstrated stimulatory effects on cranial bone and defect repair. When combined with cell-based and matrix-based models, regenerative goals can be optimized. This manuscript intends to review recent investigations of tissue engineering models used for the repair of craniofacial defects with a focus on the role of BMPs, scaffold materials, and novel cell lines. When sufficient autologous bone is not available, safe and effective strategies to engineer bone would allow the surgeon to meet the reconstructive goals of the craniofacial skeleton.

No MeSH data available.


Related in: MedlinePlus

Native bone is recapitulated using substitutes for organic, inorganic, and cellular components of bone AdBMP-9-infected USCs are seeded into a POC-TCP scaffold matrix. POC: Poly(1,8-octanediol-co-citrate), TCP: Tricalcium phosphate, Ca3(PO4)2, USC: Urine-derived stem cell, AdBMP-9: Adenovirus expressing bone morphogenetic protein-9
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4555947&req=5

Figure 3: Native bone is recapitulated using substitutes for organic, inorganic, and cellular components of bone AdBMP-9-infected USCs are seeded into a POC-TCP scaffold matrix. POC: Poly(1,8-octanediol-co-citrate), TCP: Tricalcium phosphate, Ca3(PO4)2, USC: Urine-derived stem cell, AdBMP-9: Adenovirus expressing bone morphogenetic protein-9

Mentions: Poly(1,8-octanediol-co citric acid) (POC) is a citric acid-based elastomer that has been combined with HA and β-TCP for the purpose of bone engineering. This concept is based on the notion that a combination scaffold such as POC-TCP contains elements that are representative of different aspects of native bone. POC constitutes the organic aspect of bone and TCP is analogous to the inorganic phase of bone [Figure 3]. POC is an interesting polymer choice because recent research has shown that citrate plays a large role in bone's unique stability, strength, and resistance to fracture by regulating apatite nanocrystal growth.[104105106] Therefore, this biodegradable polymer may be an optimum synthetic scaffold for regenerating bone due to its capacity to release citric acid and oligomers thereof that may help the crystallization process during polymer degradation. Additionally, research has shown that polymer-ceramic composites are compatible with soft and hard tissue and exhibit minimal inflammatory response while promoting cellular processes for bone formation.[107108] Furthermore, adhesion proteins are frequently used to enhance attachment and proliferation of cells in polymer-only scaffolds; however, POC-based composite scaffolds have demonstrated increased adhesion in the absence of such modifications, thus potentially simplifying large-scale production. POC composite scaffolds containing HA and β-TCP are capable of supporting bone production.[7092]


Biomimetic approaches to complex craniofacial defects.

Teven CM, Fisher S, Ameer GA, He TC, Reid RR - Ann Maxillofac Surg (2015 Jan-Jun)

Native bone is recapitulated using substitutes for organic, inorganic, and cellular components of bone AdBMP-9-infected USCs are seeded into a POC-TCP scaffold matrix. POC: Poly(1,8-octanediol-co-citrate), TCP: Tricalcium phosphate, Ca3(PO4)2, USC: Urine-derived stem cell, AdBMP-9: Adenovirus expressing bone morphogenetic protein-9
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4555947&req=5

Figure 3: Native bone is recapitulated using substitutes for organic, inorganic, and cellular components of bone AdBMP-9-infected USCs are seeded into a POC-TCP scaffold matrix. POC: Poly(1,8-octanediol-co-citrate), TCP: Tricalcium phosphate, Ca3(PO4)2, USC: Urine-derived stem cell, AdBMP-9: Adenovirus expressing bone morphogenetic protein-9
Mentions: Poly(1,8-octanediol-co citric acid) (POC) is a citric acid-based elastomer that has been combined with HA and β-TCP for the purpose of bone engineering. This concept is based on the notion that a combination scaffold such as POC-TCP contains elements that are representative of different aspects of native bone. POC constitutes the organic aspect of bone and TCP is analogous to the inorganic phase of bone [Figure 3]. POC is an interesting polymer choice because recent research has shown that citrate plays a large role in bone's unique stability, strength, and resistance to fracture by regulating apatite nanocrystal growth.[104105106] Therefore, this biodegradable polymer may be an optimum synthetic scaffold for regenerating bone due to its capacity to release citric acid and oligomers thereof that may help the crystallization process during polymer degradation. Additionally, research has shown that polymer-ceramic composites are compatible with soft and hard tissue and exhibit minimal inflammatory response while promoting cellular processes for bone formation.[107108] Furthermore, adhesion proteins are frequently used to enhance attachment and proliferation of cells in polymer-only scaffolds; however, POC-based composite scaffolds have demonstrated increased adhesion in the absence of such modifications, thus potentially simplifying large-scale production. POC composite scaffolds containing HA and β-TCP are capable of supporting bone production.[7092]

Bottom Line: In the field of regenerative medicine, tissue engineering has emerged as a promising concept, and several methods of bone engineering are currently under investigation.When combined with cell-based and matrix-based models, regenerative goals can be optimized.When sufficient autologous bone is not available, safe and effective strategies to engineer bone would allow the surgeon to meet the reconstructive goals of the craniofacial skeleton.

View Article: PubMed Central - PubMed

Affiliation: Department of Surgery, Section of Plastic and Reconstructive Surgery, University of Chicago Medical Center, Chicago, IL, USA.

ABSTRACT
The primary goals of craniofacial reconstruction include the restoration of the form, function, and facial esthetics, and in the case of pediatric patients, respect for craniofacial growth. The surgeon, however, faces several challenges when attempting a reconstructive cranioplasty. For that reason, craniofacial defect repair often requires sophisticated treatment strategies and multidisciplinary input. In the ideal situation, autologous tissue similar in structure and function to that which is missing can be utilized for repair. In the context of the craniofacial skeleton, autologous cranial bone, or secondarily rib, iliac crest, or scapular bone, is most favorable. Often, this option is limited by the finite supply of available bone. Therefore, alternative strategies to repair craniofacial defects are necessary. In the field of regenerative medicine, tissue engineering has emerged as a promising concept, and several methods of bone engineering are currently under investigation. A growth factor-based approach utilizing bone morphogenetic proteins (BMPs) has demonstrated stimulatory effects on cranial bone and defect repair. When combined with cell-based and matrix-based models, regenerative goals can be optimized. This manuscript intends to review recent investigations of tissue engineering models used for the repair of craniofacial defects with a focus on the role of BMPs, scaffold materials, and novel cell lines. When sufficient autologous bone is not available, safe and effective strategies to engineer bone would allow the surgeon to meet the reconstructive goals of the craniofacial skeleton.

No MeSH data available.


Related in: MedlinePlus