Limits...
Evidence of Coal-Fly-Ash Toxic Chemical Geoengineering in the Troposphere: Consequences for Public Health.

Herndon JM - Int J Environ Res Public Health (2015)

Bottom Line: The widespread, intentional and increasingly frequent chemical emplacement in the troposphere has gone unidentified and unremarked in the scientific literature for years.The results show: (1) the assemblage of elements in rainwater and in the corresponding experimental leachate are essentially identical.The consequences on public health are profound, including exposure to a variety of toxic heavy metals, radioactive elements, and neurologically-implicated chemically mobile aluminum released by body moisture in situ after inhalation or through transdermal induction.

View Article: PubMed Central - PubMed

Affiliation: Transdyne Corporation, 11044 Red Rock Drive, San Diego, CA 92131, USA. mherndon@san.rr.com.

ABSTRACT
The widespread, intentional and increasingly frequent chemical emplacement in the troposphere has gone unidentified and unremarked in the scientific literature for years. The author presents evidence that toxic coal combustion fly ash is the most likely aerosolized particulate sprayed by tanker-jets for geoengineering, weather-modification and climate-modification purposes and describes some of the multifold consequences on public health. Two methods are employed: (1) Comparison of 8 elements analyzed in rainwater, leached from aerosolized particulates, with corresponding elements leached into water from coal fly ash in published laboratory experiments, and (2) Comparison of 14 elements analyzed in dust collected outdoors on a high-efficiency particulate air (HEPA) filter with corresponding elements analyzed in un-leached coal fly ash material. The results show: (1) the assemblage of elements in rainwater and in the corresponding experimental leachate are essentially identical. At a 99% confidence interval, they have identical means (T-test) and identical variances (F-test); and (2) the assemblage of elements in the HEPA dust and in the corresponding average un-leached coal fly ash are likewise essentially identical. The consequences on public health are profound, including exposure to a variety of toxic heavy metals, radioactive elements, and neurologically-implicated chemically mobile aluminum released by body moisture in situ after inhalation or through transdermal induction.

No MeSH data available.


Related in: MedlinePlus

The average leachate chemical concentration of each of the 38 elements from the 23 different sources of European coal fly ash (Table 1) studied by [10], normalized to aluminum so as to facilitate comparison with analyzed post-aerosol-spraying rainwater. Elements of lower concentration are not shown. Red leachate elements correspond to those measured in San Diego rainwater (Figure 3), from left to right, Boron, Magnesium, Aluminum, Sulfur, Calcium, Iron, Strontium and Barium.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4555286&req=5

ijerph-12-09375-f002: The average leachate chemical concentration of each of the 38 elements from the 23 different sources of European coal fly ash (Table 1) studied by [10], normalized to aluminum so as to facilitate comparison with analyzed post-aerosol-spraying rainwater. Elements of lower concentration are not shown. Red leachate elements correspond to those measured in San Diego rainwater (Figure 3), from left to right, Boron, Magnesium, Aluminum, Sulfur, Calcium, Iron, Strontium and Barium.

Mentions: The average elemental composition of each of the 38 elements from the 23 different sources of European coal fly ash leach studied by Moreno et al. [10], presented as ratios relative to aluminum, is shown in Figure 2 as a function of Atomic Number. Normalization to one common element, in this case aluminum, makes comparisons possible when total mass or total volume is not available. In this plot, the less abundant leachate element ratios are not shown. Note that aluminum (Atomic Number 13), strontium (38), and barium (56), elements which are sometimes determined in post-spraying rainwater, are relatively abundant.


Evidence of Coal-Fly-Ash Toxic Chemical Geoengineering in the Troposphere: Consequences for Public Health.

Herndon JM - Int J Environ Res Public Health (2015)

The average leachate chemical concentration of each of the 38 elements from the 23 different sources of European coal fly ash (Table 1) studied by [10], normalized to aluminum so as to facilitate comparison with analyzed post-aerosol-spraying rainwater. Elements of lower concentration are not shown. Red leachate elements correspond to those measured in San Diego rainwater (Figure 3), from left to right, Boron, Magnesium, Aluminum, Sulfur, Calcium, Iron, Strontium and Barium.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4555286&req=5

ijerph-12-09375-f002: The average leachate chemical concentration of each of the 38 elements from the 23 different sources of European coal fly ash (Table 1) studied by [10], normalized to aluminum so as to facilitate comparison with analyzed post-aerosol-spraying rainwater. Elements of lower concentration are not shown. Red leachate elements correspond to those measured in San Diego rainwater (Figure 3), from left to right, Boron, Magnesium, Aluminum, Sulfur, Calcium, Iron, Strontium and Barium.
Mentions: The average elemental composition of each of the 38 elements from the 23 different sources of European coal fly ash leach studied by Moreno et al. [10], presented as ratios relative to aluminum, is shown in Figure 2 as a function of Atomic Number. Normalization to one common element, in this case aluminum, makes comparisons possible when total mass or total volume is not available. In this plot, the less abundant leachate element ratios are not shown. Note that aluminum (Atomic Number 13), strontium (38), and barium (56), elements which are sometimes determined in post-spraying rainwater, are relatively abundant.

Bottom Line: The widespread, intentional and increasingly frequent chemical emplacement in the troposphere has gone unidentified and unremarked in the scientific literature for years.The results show: (1) the assemblage of elements in rainwater and in the corresponding experimental leachate are essentially identical.The consequences on public health are profound, including exposure to a variety of toxic heavy metals, radioactive elements, and neurologically-implicated chemically mobile aluminum released by body moisture in situ after inhalation or through transdermal induction.

View Article: PubMed Central - PubMed

Affiliation: Transdyne Corporation, 11044 Red Rock Drive, San Diego, CA 92131, USA. mherndon@san.rr.com.

ABSTRACT
The widespread, intentional and increasingly frequent chemical emplacement in the troposphere has gone unidentified and unremarked in the scientific literature for years. The author presents evidence that toxic coal combustion fly ash is the most likely aerosolized particulate sprayed by tanker-jets for geoengineering, weather-modification and climate-modification purposes and describes some of the multifold consequences on public health. Two methods are employed: (1) Comparison of 8 elements analyzed in rainwater, leached from aerosolized particulates, with corresponding elements leached into water from coal fly ash in published laboratory experiments, and (2) Comparison of 14 elements analyzed in dust collected outdoors on a high-efficiency particulate air (HEPA) filter with corresponding elements analyzed in un-leached coal fly ash material. The results show: (1) the assemblage of elements in rainwater and in the corresponding experimental leachate are essentially identical. At a 99% confidence interval, they have identical means (T-test) and identical variances (F-test); and (2) the assemblage of elements in the HEPA dust and in the corresponding average un-leached coal fly ash are likewise essentially identical. The consequences on public health are profound, including exposure to a variety of toxic heavy metals, radioactive elements, and neurologically-implicated chemically mobile aluminum released by body moisture in situ after inhalation or through transdermal induction.

No MeSH data available.


Related in: MedlinePlus