Limits...
Transmission and full-band coherent detection of polarization-multiplexed all-optical Nyquist signals generated by Sinc-shaped Nyquist pulses.

Zhang J, Yu J, Chi N - Sci Rep (2015)

Bottom Line: All optical method is considered as a promising technique for high symbol rate Nyquist signal generation, which has attracted a lot of research interests for high spectral-efficiency and high-capacity optical communication system.In this paper, we extend our previous work and report the fully experimental demonstration of polarization-division multiplexed (PDM) all-optical Nyquist signal generation based on Sinc-shaped Nyquist pulse with advanced modulation formats, fiber-transmission and single-receiver full-band coherent detection.Using this scheme, we have successfully demonstrated the generation, fiber transmission and single-receiver full-band coherent detection of all-optical Nyquist PDM-QPSK and PDM-16QAM signals up to 125-GBaud. 1-Tb/s single-carrier PDM-16QAM signal generation and full-band coherent detection is realized, which shows the advantage and feasibility of the single-carrier all-optical Nyquist signals.

View Article: PubMed Central - PubMed

Affiliation: Department of Communication Science and Engineering, and Key Laboratory for Information Science of Electromagnetic Waves (MoE), Fudan University, 220 Handan Road, Shanghai 200433, China.

ABSTRACT
All optical method is considered as a promising technique for high symbol rate Nyquist signal generation, which has attracted a lot of research interests for high spectral-efficiency and high-capacity optical communication system. In this paper, we extend our previous work and report the fully experimental demonstration of polarization-division multiplexed (PDM) all-optical Nyquist signal generation based on Sinc-shaped Nyquist pulse with advanced modulation formats, fiber-transmission and single-receiver full-band coherent detection. Using this scheme, we have successfully demonstrated the generation, fiber transmission and single-receiver full-band coherent detection of all-optical Nyquist PDM-QPSK and PDM-16QAM signals up to 125-GBaud. 1-Tb/s single-carrier PDM-16QAM signal generation and full-band coherent detection is realized, which shows the advantage and feasibility of the single-carrier all-optical Nyquist signals.

No MeSH data available.


Related in: MedlinePlus

The OSNR penalty at BER of 1 × 10−3 as a function of time offset.(a) 62.5 and (b) 125 Gbaud PDM-QPSK signals are tested under the three different time offset cases in Fig. 9.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4555172&req=5

f12: The OSNR penalty at BER of 1 × 10−3 as a function of time offset.(a) 62.5 and (b) 125 Gbaud PDM-QPSK signals are tested under the three different time offset cases in Fig. 9.

Mentions: Two different symbol-rate signals are simulated and calculated here, including the 62.5 and 125-GBaud all-optical Nyquist PDM-QPSK signals. Both signals are generated based on the proposed schemes, using 5 × 12.5 and 5 × 25-GHz combs. The OSNR penalty at BER of 1 × 10−3 as a function of time-offset for 62.5 and 125-GBaud signals under the three offset cases in Fig. 11 are shown in Fig. 12(a,b), respectively. Several conclusions can be made by these results in Fig. 12. First, both Fig. 12(a,b) show that the OSNR penalty increases with the addition of time-offset, which is due to the increased inter-symbol-interference (ISI) of adjacent symbols. Second, the opposite time-offset of the different pulses shows larger OSNR penalty compared with the other two cases, because the opposite time-offsets cause more severe ISI to particular symbols (such as the symbols of the third pulse). Finally, as proved by the experimental results above, higher symbol-rate signal is more sensitive to the time-offset compared with lower symbol-rate signal. Since lower symbol-rate signals have longer symbol duration, they are less sensitive to the time-offset. They are with good agreement with the results in Figs 5 and 8.


Transmission and full-band coherent detection of polarization-multiplexed all-optical Nyquist signals generated by Sinc-shaped Nyquist pulses.

Zhang J, Yu J, Chi N - Sci Rep (2015)

The OSNR penalty at BER of 1 × 10−3 as a function of time offset.(a) 62.5 and (b) 125 Gbaud PDM-QPSK signals are tested under the three different time offset cases in Fig. 9.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4555172&req=5

f12: The OSNR penalty at BER of 1 × 10−3 as a function of time offset.(a) 62.5 and (b) 125 Gbaud PDM-QPSK signals are tested under the three different time offset cases in Fig. 9.
Mentions: Two different symbol-rate signals are simulated and calculated here, including the 62.5 and 125-GBaud all-optical Nyquist PDM-QPSK signals. Both signals are generated based on the proposed schemes, using 5 × 12.5 and 5 × 25-GHz combs. The OSNR penalty at BER of 1 × 10−3 as a function of time-offset for 62.5 and 125-GBaud signals under the three offset cases in Fig. 11 are shown in Fig. 12(a,b), respectively. Several conclusions can be made by these results in Fig. 12. First, both Fig. 12(a,b) show that the OSNR penalty increases with the addition of time-offset, which is due to the increased inter-symbol-interference (ISI) of adjacent symbols. Second, the opposite time-offset of the different pulses shows larger OSNR penalty compared with the other two cases, because the opposite time-offsets cause more severe ISI to particular symbols (such as the symbols of the third pulse). Finally, as proved by the experimental results above, higher symbol-rate signal is more sensitive to the time-offset compared with lower symbol-rate signal. Since lower symbol-rate signals have longer symbol duration, they are less sensitive to the time-offset. They are with good agreement with the results in Figs 5 and 8.

Bottom Line: All optical method is considered as a promising technique for high symbol rate Nyquist signal generation, which has attracted a lot of research interests for high spectral-efficiency and high-capacity optical communication system.In this paper, we extend our previous work and report the fully experimental demonstration of polarization-division multiplexed (PDM) all-optical Nyquist signal generation based on Sinc-shaped Nyquist pulse with advanced modulation formats, fiber-transmission and single-receiver full-band coherent detection.Using this scheme, we have successfully demonstrated the generation, fiber transmission and single-receiver full-band coherent detection of all-optical Nyquist PDM-QPSK and PDM-16QAM signals up to 125-GBaud. 1-Tb/s single-carrier PDM-16QAM signal generation and full-band coherent detection is realized, which shows the advantage and feasibility of the single-carrier all-optical Nyquist signals.

View Article: PubMed Central - PubMed

Affiliation: Department of Communication Science and Engineering, and Key Laboratory for Information Science of Electromagnetic Waves (MoE), Fudan University, 220 Handan Road, Shanghai 200433, China.

ABSTRACT
All optical method is considered as a promising technique for high symbol rate Nyquist signal generation, which has attracted a lot of research interests for high spectral-efficiency and high-capacity optical communication system. In this paper, we extend our previous work and report the fully experimental demonstration of polarization-division multiplexed (PDM) all-optical Nyquist signal generation based on Sinc-shaped Nyquist pulse with advanced modulation formats, fiber-transmission and single-receiver full-band coherent detection. Using this scheme, we have successfully demonstrated the generation, fiber transmission and single-receiver full-band coherent detection of all-optical Nyquist PDM-QPSK and PDM-16QAM signals up to 125-GBaud. 1-Tb/s single-carrier PDM-16QAM signal generation and full-band coherent detection is realized, which shows the advantage and feasibility of the single-carrier all-optical Nyquist signals.

No MeSH data available.


Related in: MedlinePlus