Limits...
Current applications of graphene oxide in nanomedicine.

Wu SY, An SS, Hulme J - Int J Nanomedicine (2015)

Bottom Line: Graphene has attracted the attention of the entire scientific community due to its unique mechanical and electrochemical, electronic, biomaterial, and chemical properties.The water-soluble derivative of graphene, graphene oxide, is highly prized and continues to be intensely investigated by scientists around the world.This review seeks to provide an overview of the currents applications of graphene oxide in nanomedicine, focusing on delivery systems, tissue engineering, cancer therapies, imaging, and cytotoxicity, together with a short discussion on the difficulties and the trends for future research regarding this amazing material.

View Article: PubMed Central - PubMed

Affiliation: Department of Bionanotechnology, Gachon Medical Research Institute, Gachon University, Sungnamsi, Republic of Korea.

ABSTRACT
Graphene has attracted the attention of the entire scientific community due to its unique mechanical and electrochemical, electronic, biomaterial, and chemical properties. The water-soluble derivative of graphene, graphene oxide, is highly prized and continues to be intensely investigated by scientists around the world. This review seeks to provide an overview of the currents applications of graphene oxide in nanomedicine, focusing on delivery systems, tissue engineering, cancer therapies, imaging, and cytotoxicity, together with a short discussion on the difficulties and the trends for future research regarding this amazing material.

No MeSH data available.


(A) Confocal cross-sectional images of the control group (top) and the 3L tissue constructs (bottom) after 2 days of culture. F-actin and cell nuclei were labeled with green and blue fluorescent dyes, respectively. The 3T3 fibroblasts were found to connect the cells on the first layer to the cells on the second layer through noncontinuous PLL-coated GO layer (red arrow, empty black area). (B) Hematoxylin and eosin (H&E) stain images of 3L 3T3 fibroblasts. The solid red lines indicate the interfaces between each layer. (C) Schematic illustration of the cross-section of the 2L construct showing the cells residing above and below the PLL-coated GO nanofilms. (D) SEM images showing the cross-section and (E) the thickness of 2L constructs fabricated with various concentrations of PLL-coated GOs as interlayer GO films. (F) SEM images showing the cross-section, and (G) the thickness of 1L, 2L, and 3L constructs. The thickness of the constructs was estimated from the corresponding SEM images. Reproduced from Shin SR, Aghaei-Ghareh-Bolagh B, Gao X, et al. Layer-by-layer assembly of 3D tissue constructs with functionalized graphene. Adv Mater. 2014;22(39):6136–6144.135 Copyright © 2015 Wiley ACH.Abbreviations: GO, graphene oxide; PLL, poly-L-lysine; SEM, scanning electron microscope.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4554423&req=5

f3-ijn-10-009: (A) Confocal cross-sectional images of the control group (top) and the 3L tissue constructs (bottom) after 2 days of culture. F-actin and cell nuclei were labeled with green and blue fluorescent dyes, respectively. The 3T3 fibroblasts were found to connect the cells on the first layer to the cells on the second layer through noncontinuous PLL-coated GO layer (red arrow, empty black area). (B) Hematoxylin and eosin (H&E) stain images of 3L 3T3 fibroblasts. The solid red lines indicate the interfaces between each layer. (C) Schematic illustration of the cross-section of the 2L construct showing the cells residing above and below the PLL-coated GO nanofilms. (D) SEM images showing the cross-section and (E) the thickness of 2L constructs fabricated with various concentrations of PLL-coated GOs as interlayer GO films. (F) SEM images showing the cross-section, and (G) the thickness of 1L, 2L, and 3L constructs. The thickness of the constructs was estimated from the corresponding SEM images. Reproduced from Shin SR, Aghaei-Ghareh-Bolagh B, Gao X, et al. Layer-by-layer assembly of 3D tissue constructs with functionalized graphene. Adv Mater. 2014;22(39):6136–6144.135 Copyright © 2015 Wiley ACH.Abbreviations: GO, graphene oxide; PLL, poly-L-lysine; SEM, scanning electron microscope.

Mentions: The development of highly organized and functional 3D complex scaffolds in vitro is of great importance in TE, since native tissues and organs exhibit highly organized and multifunctional architectures composed of extracellular matrix, different cell types, and chemical and physical signaling clues. Cardiomyocytes are particularly interesting forming dense quasi-lamellar and high vascularized tissue in heart muscle.130,131 Mimicking the vascularized structures of the myocardium with various types of cell still remains one of the major challenges in TE. Some of the most commonly used methods are bottom up assembly132 or the layer-by-layer133,134 (LBL) approach. In a recent article by Shin et al135 high interlayer conductivity and strong cellular adhesion was achieved in a multilayer cell construct using functional PLL-GO NPs (GONs) and the LBL approach. The 3L construct made with PLL-GO promoted thicker tissue growth (65 µm) compared with the construct without PLL-GO as a control (23 µm). The thickness and size of the layers PLL-GO layers ranged from a few microns to 10 µm, which is much thicker than tissue grown on using fibronectin, gelatin (G), and nanofilms (6.2 nm). The advantages of using PLL-GO layers can be seen in the confocal cross-sectional images of the 3L tissue constructs and the control group after 2 days of culture (Figure 3).


Current applications of graphene oxide in nanomedicine.

Wu SY, An SS, Hulme J - Int J Nanomedicine (2015)

(A) Confocal cross-sectional images of the control group (top) and the 3L tissue constructs (bottom) after 2 days of culture. F-actin and cell nuclei were labeled with green and blue fluorescent dyes, respectively. The 3T3 fibroblasts were found to connect the cells on the first layer to the cells on the second layer through noncontinuous PLL-coated GO layer (red arrow, empty black area). (B) Hematoxylin and eosin (H&E) stain images of 3L 3T3 fibroblasts. The solid red lines indicate the interfaces between each layer. (C) Schematic illustration of the cross-section of the 2L construct showing the cells residing above and below the PLL-coated GO nanofilms. (D) SEM images showing the cross-section and (E) the thickness of 2L constructs fabricated with various concentrations of PLL-coated GOs as interlayer GO films. (F) SEM images showing the cross-section, and (G) the thickness of 1L, 2L, and 3L constructs. The thickness of the constructs was estimated from the corresponding SEM images. Reproduced from Shin SR, Aghaei-Ghareh-Bolagh B, Gao X, et al. Layer-by-layer assembly of 3D tissue constructs with functionalized graphene. Adv Mater. 2014;22(39):6136–6144.135 Copyright © 2015 Wiley ACH.Abbreviations: GO, graphene oxide; PLL, poly-L-lysine; SEM, scanning electron microscope.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4554423&req=5

f3-ijn-10-009: (A) Confocal cross-sectional images of the control group (top) and the 3L tissue constructs (bottom) after 2 days of culture. F-actin and cell nuclei were labeled with green and blue fluorescent dyes, respectively. The 3T3 fibroblasts were found to connect the cells on the first layer to the cells on the second layer through noncontinuous PLL-coated GO layer (red arrow, empty black area). (B) Hematoxylin and eosin (H&E) stain images of 3L 3T3 fibroblasts. The solid red lines indicate the interfaces between each layer. (C) Schematic illustration of the cross-section of the 2L construct showing the cells residing above and below the PLL-coated GO nanofilms. (D) SEM images showing the cross-section and (E) the thickness of 2L constructs fabricated with various concentrations of PLL-coated GOs as interlayer GO films. (F) SEM images showing the cross-section, and (G) the thickness of 1L, 2L, and 3L constructs. The thickness of the constructs was estimated from the corresponding SEM images. Reproduced from Shin SR, Aghaei-Ghareh-Bolagh B, Gao X, et al. Layer-by-layer assembly of 3D tissue constructs with functionalized graphene. Adv Mater. 2014;22(39):6136–6144.135 Copyright © 2015 Wiley ACH.Abbreviations: GO, graphene oxide; PLL, poly-L-lysine; SEM, scanning electron microscope.
Mentions: The development of highly organized and functional 3D complex scaffolds in vitro is of great importance in TE, since native tissues and organs exhibit highly organized and multifunctional architectures composed of extracellular matrix, different cell types, and chemical and physical signaling clues. Cardiomyocytes are particularly interesting forming dense quasi-lamellar and high vascularized tissue in heart muscle.130,131 Mimicking the vascularized structures of the myocardium with various types of cell still remains one of the major challenges in TE. Some of the most commonly used methods are bottom up assembly132 or the layer-by-layer133,134 (LBL) approach. In a recent article by Shin et al135 high interlayer conductivity and strong cellular adhesion was achieved in a multilayer cell construct using functional PLL-GO NPs (GONs) and the LBL approach. The 3L construct made with PLL-GO promoted thicker tissue growth (65 µm) compared with the construct without PLL-GO as a control (23 µm). The thickness and size of the layers PLL-GO layers ranged from a few microns to 10 µm, which is much thicker than tissue grown on using fibronectin, gelatin (G), and nanofilms (6.2 nm). The advantages of using PLL-GO layers can be seen in the confocal cross-sectional images of the 3L tissue constructs and the control group after 2 days of culture (Figure 3).

Bottom Line: Graphene has attracted the attention of the entire scientific community due to its unique mechanical and electrochemical, electronic, biomaterial, and chemical properties.The water-soluble derivative of graphene, graphene oxide, is highly prized and continues to be intensely investigated by scientists around the world.This review seeks to provide an overview of the currents applications of graphene oxide in nanomedicine, focusing on delivery systems, tissue engineering, cancer therapies, imaging, and cytotoxicity, together with a short discussion on the difficulties and the trends for future research regarding this amazing material.

View Article: PubMed Central - PubMed

Affiliation: Department of Bionanotechnology, Gachon Medical Research Institute, Gachon University, Sungnamsi, Republic of Korea.

ABSTRACT
Graphene has attracted the attention of the entire scientific community due to its unique mechanical and electrochemical, electronic, biomaterial, and chemical properties. The water-soluble derivative of graphene, graphene oxide, is highly prized and continues to be intensely investigated by scientists around the world. This review seeks to provide an overview of the currents applications of graphene oxide in nanomedicine, focusing on delivery systems, tissue engineering, cancer therapies, imaging, and cytotoxicity, together with a short discussion on the difficulties and the trends for future research regarding this amazing material.

No MeSH data available.