Limits...
Physio-biochemical and morphological characters of halophyte legume shrub, Acacia ampliceps seedlings in response to salt stress under greenhouse.

Theerawitaya C, Tisarum R, Samphumphuang T, Singh HP - Front Plant Sci (2015)

Bottom Line: Na(+) and Ca(2+) contents in the leaf tissues increased significantly under salt treatment, whereas K(+) content declined in salt-stressed plants.However, these declined under high levels of salinity (400-600 mM NaCl), consequently resulting in a reduced net photosynthetic rate (R (2) = 0.81) and plant dry weight (R (2) = 0.91).The study concludes that A. ampliceps has an osmotic adjustment and Na(+) compartmentation as effective salt defense mechanisms, and thus it could be an excellent species to grow in salt-affected soils.

View Article: PubMed Central - PubMed

Affiliation: National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency , Pathum Thani, Thailand.

ABSTRACT
Acacia ampliceps (salt wattle), a leguminous shrub, has been introduced in salt-affected areas in the northeast of Thailand for the remediation of saline soils. However, the defense mechanisms underlying salt tolerance A. ampliceps are unknown. We investigated various physio-biochemical and morphological attributes of A. ampliceps in response to varying levels of salt treatment (200-600 mM NaCl). Seedlings of A. ampliceps (25 ± 2 cm in plant height) raised from seeds were treated with 200 mM (mild stress), 400 and 600 mM (extreme stress) of salt treatment (NaCl) under greenhouse conditions. Na(+) and Ca(2+) contents in the leaf tissues increased significantly under salt treatment, whereas K(+) content declined in salt-stressed plants. Free proline and soluble sugar contents in plants grown under extreme salt stress (600 mM NaCl) for 9 days significantly increased by 28.7 (53.33 μmol g(-1) FW) and 3.2 (42.11 mg g(-1) DW) folds, respectively over the control, thereby playing a major role as osmotic adjustment. Na(+) enrichment in the phyllode tissues of salt-stressed seedlings positively related to total chlorophyll (TC) degradation (R (2) = 0.72). Photosynthetic pigments and chlorophyll fluorescence in salt-stressed plants increased under mild salt stress (200 mM NaCl). However, these declined under high levels of salinity (400-600 mM NaCl), consequently resulting in a reduced net photosynthetic rate (R (2) = 0.81) and plant dry weight (R (2) = 0.91). The study concludes that A. ampliceps has an osmotic adjustment and Na(+) compartmentation as effective salt defense mechanisms, and thus it could be an excellent species to grow in salt-affected soils.

No MeSH data available.


Plant morphological characters of Acacia ampliceps seedlings grown under salt stress conditions for 9 days.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4553901&req=5

Figure 1: Plant morphological characters of Acacia ampliceps seedlings grown under salt stress conditions for 9 days.

Mentions: Leaf color of control (0 mM NaCl) and mild salt-stressed plants (200 mM NaCl) was green. In contrast, phyllodes and the bipinnate leaves (true older leaves) turned yellow in the plants grown under extreme salt stress (400–600 mM NaCl) for 9 days. The overall growth characters declined in plants subjected to extreme salt stress for 9 days (Figure 1). SH, RL, NL, NR, FW, DW, and phyllode LA of salt wattle grown under 200 mM NaCl stress increased; however, these declined significantly when plants were subjected to 400–600 mM NaCl for 9 days (Table 1 and Figures 2A–C). SH, RL, NL, NR, shoot FW, and root FW in extreme salt-stressed (600 mM NaCl) plants were sharply dropped by 25, 23, 60, 45, 78, and 74%, respectively, compared to plants growing under mild stress (200 mM NaCl; Table 1). In addition, the salt-sensitive parameters such as NL, FW, and DW were decreased in plants exposed to 400 mM NaCl for 9 days, similar result to 600 mM. The growth and development of salt wattle plants under mild salt stress were enhanced and better than those under control condition (0 mM NaCl; Table 1).


Physio-biochemical and morphological characters of halophyte legume shrub, Acacia ampliceps seedlings in response to salt stress under greenhouse.

Theerawitaya C, Tisarum R, Samphumphuang T, Singh HP - Front Plant Sci (2015)

Plant morphological characters of Acacia ampliceps seedlings grown under salt stress conditions for 9 days.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4553901&req=5

Figure 1: Plant morphological characters of Acacia ampliceps seedlings grown under salt stress conditions for 9 days.
Mentions: Leaf color of control (0 mM NaCl) and mild salt-stressed plants (200 mM NaCl) was green. In contrast, phyllodes and the bipinnate leaves (true older leaves) turned yellow in the plants grown under extreme salt stress (400–600 mM NaCl) for 9 days. The overall growth characters declined in plants subjected to extreme salt stress for 9 days (Figure 1). SH, RL, NL, NR, FW, DW, and phyllode LA of salt wattle grown under 200 mM NaCl stress increased; however, these declined significantly when plants were subjected to 400–600 mM NaCl for 9 days (Table 1 and Figures 2A–C). SH, RL, NL, NR, shoot FW, and root FW in extreme salt-stressed (600 mM NaCl) plants were sharply dropped by 25, 23, 60, 45, 78, and 74%, respectively, compared to plants growing under mild stress (200 mM NaCl; Table 1). In addition, the salt-sensitive parameters such as NL, FW, and DW were decreased in plants exposed to 400 mM NaCl for 9 days, similar result to 600 mM. The growth and development of salt wattle plants under mild salt stress were enhanced and better than those under control condition (0 mM NaCl; Table 1).

Bottom Line: Na(+) and Ca(2+) contents in the leaf tissues increased significantly under salt treatment, whereas K(+) content declined in salt-stressed plants.However, these declined under high levels of salinity (400-600 mM NaCl), consequently resulting in a reduced net photosynthetic rate (R (2) = 0.81) and plant dry weight (R (2) = 0.91).The study concludes that A. ampliceps has an osmotic adjustment and Na(+) compartmentation as effective salt defense mechanisms, and thus it could be an excellent species to grow in salt-affected soils.

View Article: PubMed Central - PubMed

Affiliation: National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency , Pathum Thani, Thailand.

ABSTRACT
Acacia ampliceps (salt wattle), a leguminous shrub, has been introduced in salt-affected areas in the northeast of Thailand for the remediation of saline soils. However, the defense mechanisms underlying salt tolerance A. ampliceps are unknown. We investigated various physio-biochemical and morphological attributes of A. ampliceps in response to varying levels of salt treatment (200-600 mM NaCl). Seedlings of A. ampliceps (25 ± 2 cm in plant height) raised from seeds were treated with 200 mM (mild stress), 400 and 600 mM (extreme stress) of salt treatment (NaCl) under greenhouse conditions. Na(+) and Ca(2+) contents in the leaf tissues increased significantly under salt treatment, whereas K(+) content declined in salt-stressed plants. Free proline and soluble sugar contents in plants grown under extreme salt stress (600 mM NaCl) for 9 days significantly increased by 28.7 (53.33 μmol g(-1) FW) and 3.2 (42.11 mg g(-1) DW) folds, respectively over the control, thereby playing a major role as osmotic adjustment. Na(+) enrichment in the phyllode tissues of salt-stressed seedlings positively related to total chlorophyll (TC) degradation (R (2) = 0.72). Photosynthetic pigments and chlorophyll fluorescence in salt-stressed plants increased under mild salt stress (200 mM NaCl). However, these declined under high levels of salinity (400-600 mM NaCl), consequently resulting in a reduced net photosynthetic rate (R (2) = 0.81) and plant dry weight (R (2) = 0.91). The study concludes that A. ampliceps has an osmotic adjustment and Na(+) compartmentation as effective salt defense mechanisms, and thus it could be an excellent species to grow in salt-affected soils.

No MeSH data available.