Limits...
Stress Tolerance of Bed Bugs: A Review of Factors That Cause Trauma to Cimex lectularius and C. Hemipterus.

Benoit JB - Insects (2011)

Bottom Line: Long-term exposure to temperatures above 35 °C results in significant reduction in survival of mobile bed bugs.Blood feeding, although necessary for survival and reproduction, is discussed as a stress due to thermal and osmotic fluctuations that result from ingesting a warm bloodmeal from a vertebrate host.High levels of traumatic insemination (mating) of bed bugs has been linked to reduced survival and fecundity along with possibly exposing individuals to microbial infections after cuticular penetration by the paramere (=male reproductive organ), thus represents a form of sexual stress.

View Article: PubMed Central - PubMed

Affiliation: Division of Epidemiology of Microbial Diseases, School of Public Health, Yale University, New Haven, CT 06510, USA. joshua.benoit@yale.edu.

ABSTRACT
Recent emergence of bed bugs (Cimex spp.) has prompted a significant expansion of research devoted to this pest. The ability to survive and recover from stress has significant implications on the distribution and survival of insects, and bed bugs are no exception. Research on bed bug stress tolerance has shown considerable progress and necessitates a review on this topic. Bed bugs have an extraordinary ability to resist dehydration between bloodmeals, and this represents a critical factor allowing their prolonged survival when no host is available. High relative humidities are detrimental to bed bugs, leading to reduced survival in comparison to those held at lower relative humidities. Continual exposure of bed bugs, eggs and mobile stages, to temperatures below freezing and short term exposure (=1 h) to temperatures below -16 to -18 °C results in mortality. The upper thermal limit for short term exposure of eggs, nymphs and adults is between 40-45 °C for the common (Cimex lectularius) and tropical (C. hemipterus) bed bugs. Long-term exposure to temperatures above 35 °C results in significant reduction in survival of mobile bed bugs. Eggs for C. lectularius and C. hemipterus are no longer viable when held below 10 °C or above 37 °C throughout embryogenesis. Blood feeding, although necessary for survival and reproduction, is discussed as a stress due to thermal and osmotic fluctuations that result from ingesting a warm bloodmeal from a vertebrate host. Cold, heat, water stress and blood feeding prompted the expression of heat shock proteins (Hsps). Pesticide application is a common human-induced stress for urban pests, and recent studies have documented pesticide resistance in many bed bug populations. High levels of traumatic insemination (mating) of bed bugs has been linked to reduced survival and fecundity along with possibly exposing individuals to microbial infections after cuticular penetration by the paramere (=male reproductive organ), thus represents a form of sexual stress. Additionally, less common stress types such as microbial infections that have been documented in bed bugs will be discussed. Overall, this review provides a current update of research related to bed bug stress tolerance and how their ability to resist stressful conditions has lead to their expansion and proliferation.

No MeSH data available.


Related in: MedlinePlus

Proportion of water mass lost at 0% relative humidity (RH) and 25 °C after removal of an individual female held in containers containing 0, 1, 10 and 20 males for 6 h. Water loss rates were determined according to Benoit et al. [39]. Water loss rate is presented as percent water lost per hour. Data represents the mean ± SE, N = 30.*, significantly different from 0 males (P < 0.05).
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4553455&req=5

f1-insects-02-00151: Proportion of water mass lost at 0% relative humidity (RH) and 25 °C after removal of an individual female held in containers containing 0, 1, 10 and 20 males for 6 h. Water loss rates were determined according to Benoit et al. [39]. Water loss rate is presented as percent water lost per hour. Data represents the mean ± SE, N = 30.*, significantly different from 0 males (P < 0.05).

Mentions: There are three main negative consequences of traumatic insemination, (1) reduced longevity and reproductive success of the females, (2) potential infections due to piercing of the paramere into the female and (3) unwanted copulation between fifth instar nymphs/males and other conspecific males [32,33,38]. Experimental manipulation of mating indicates that high mating frequencies, considered normal, reduces the longevity of bed bugs by nearly 40d [32]. The longer survival of female bed bugs due to low mating increased egg production throughout the lifetime of a female [32]. Although low mating is preferable to females, sperm precedence indicates that multiple matings are beneficial to males to ensure that it is the last male to mate [32,33]. The exact mechanism for this reduced longevity is not known. Two possibilities for the reduced lifespan after mating are nutrient resources need to be utilized for repairing the damage caused by copulation and insemination or cuticle piercing increases the likelihood of microbial infection [33,34,151]. The spermalage is likely present to reduce the likelihood of microbial infections during traumatic insemination [34]. Along with these possibilities, continual harassment and copulation leads to increased water loss rates of female bed bugs (Figure 1), which suggests that individuals are more susceptible to dehydration with increased mating. This increased water loss could cause dehydration stress between bloodmeals, resulting in increased oxidative stress and other types of dehydration-induced damage which will need to be repaired at the expense somatic maintenance [137]. Previous studies failed to reveal an apparent advantage to multiple copulation for females through traumatic insemination [32,152]. It was suggested that the presence of the mesospermalage may select sperm that is better suited for producing offspring [33], but this is still speculative. Recently, it has shown that ejaculate components delay reproductive senescence [38], but this is independent of the number of copulations.


Stress Tolerance of Bed Bugs: A Review of Factors That Cause Trauma to Cimex lectularius and C. Hemipterus.

Benoit JB - Insects (2011)

Proportion of water mass lost at 0% relative humidity (RH) and 25 °C after removal of an individual female held in containers containing 0, 1, 10 and 20 males for 6 h. Water loss rates were determined according to Benoit et al. [39]. Water loss rate is presented as percent water lost per hour. Data represents the mean ± SE, N = 30.*, significantly different from 0 males (P < 0.05).
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4553455&req=5

f1-insects-02-00151: Proportion of water mass lost at 0% relative humidity (RH) and 25 °C after removal of an individual female held in containers containing 0, 1, 10 and 20 males for 6 h. Water loss rates were determined according to Benoit et al. [39]. Water loss rate is presented as percent water lost per hour. Data represents the mean ± SE, N = 30.*, significantly different from 0 males (P < 0.05).
Mentions: There are three main negative consequences of traumatic insemination, (1) reduced longevity and reproductive success of the females, (2) potential infections due to piercing of the paramere into the female and (3) unwanted copulation between fifth instar nymphs/males and other conspecific males [32,33,38]. Experimental manipulation of mating indicates that high mating frequencies, considered normal, reduces the longevity of bed bugs by nearly 40d [32]. The longer survival of female bed bugs due to low mating increased egg production throughout the lifetime of a female [32]. Although low mating is preferable to females, sperm precedence indicates that multiple matings are beneficial to males to ensure that it is the last male to mate [32,33]. The exact mechanism for this reduced longevity is not known. Two possibilities for the reduced lifespan after mating are nutrient resources need to be utilized for repairing the damage caused by copulation and insemination or cuticle piercing increases the likelihood of microbial infection [33,34,151]. The spermalage is likely present to reduce the likelihood of microbial infections during traumatic insemination [34]. Along with these possibilities, continual harassment and copulation leads to increased water loss rates of female bed bugs (Figure 1), which suggests that individuals are more susceptible to dehydration with increased mating. This increased water loss could cause dehydration stress between bloodmeals, resulting in increased oxidative stress and other types of dehydration-induced damage which will need to be repaired at the expense somatic maintenance [137]. Previous studies failed to reveal an apparent advantage to multiple copulation for females through traumatic insemination [32,152]. It was suggested that the presence of the mesospermalage may select sperm that is better suited for producing offspring [33], but this is still speculative. Recently, it has shown that ejaculate components delay reproductive senescence [38], but this is independent of the number of copulations.

Bottom Line: Long-term exposure to temperatures above 35 °C results in significant reduction in survival of mobile bed bugs.Blood feeding, although necessary for survival and reproduction, is discussed as a stress due to thermal and osmotic fluctuations that result from ingesting a warm bloodmeal from a vertebrate host.High levels of traumatic insemination (mating) of bed bugs has been linked to reduced survival and fecundity along with possibly exposing individuals to microbial infections after cuticular penetration by the paramere (=male reproductive organ), thus represents a form of sexual stress.

View Article: PubMed Central - PubMed

Affiliation: Division of Epidemiology of Microbial Diseases, School of Public Health, Yale University, New Haven, CT 06510, USA. joshua.benoit@yale.edu.

ABSTRACT
Recent emergence of bed bugs (Cimex spp.) has prompted a significant expansion of research devoted to this pest. The ability to survive and recover from stress has significant implications on the distribution and survival of insects, and bed bugs are no exception. Research on bed bug stress tolerance has shown considerable progress and necessitates a review on this topic. Bed bugs have an extraordinary ability to resist dehydration between bloodmeals, and this represents a critical factor allowing their prolonged survival when no host is available. High relative humidities are detrimental to bed bugs, leading to reduced survival in comparison to those held at lower relative humidities. Continual exposure of bed bugs, eggs and mobile stages, to temperatures below freezing and short term exposure (=1 h) to temperatures below -16 to -18 °C results in mortality. The upper thermal limit for short term exposure of eggs, nymphs and adults is between 40-45 °C for the common (Cimex lectularius) and tropical (C. hemipterus) bed bugs. Long-term exposure to temperatures above 35 °C results in significant reduction in survival of mobile bed bugs. Eggs for C. lectularius and C. hemipterus are no longer viable when held below 10 °C or above 37 °C throughout embryogenesis. Blood feeding, although necessary for survival and reproduction, is discussed as a stress due to thermal and osmotic fluctuations that result from ingesting a warm bloodmeal from a vertebrate host. Cold, heat, water stress and blood feeding prompted the expression of heat shock proteins (Hsps). Pesticide application is a common human-induced stress for urban pests, and recent studies have documented pesticide resistance in many bed bug populations. High levels of traumatic insemination (mating) of bed bugs has been linked to reduced survival and fecundity along with possibly exposing individuals to microbial infections after cuticular penetration by the paramere (=male reproductive organ), thus represents a form of sexual stress. Additionally, less common stress types such as microbial infections that have been documented in bed bugs will be discussed. Overall, this review provides a current update of research related to bed bug stress tolerance and how their ability to resist stressful conditions has lead to their expansion and proliferation.

No MeSH data available.


Related in: MedlinePlus