Limits...
Chemical Ecology of the Colorado Potato Beetle, Leptinotarsa decemlineata (Say) (Coleoptera: Chrysomelidae), and Potential for Alternative Control Methods.

Sablon L, Dickens JC, Haubruge É, Verheggen FJ - Insects (2012)

Bottom Line: In the second section, we present the chemical signals used by CPB in intraspecific communication, including sex and aggregation pheromones.Some of these chemicals are used by natural enemies of CPBs to locate their prey and are presented in the third section.The last section of this review is devoted a discussion of the potential of some natural chemicals in biological control of CPB and to approaches that already reached efficient field applications.

View Article: PubMed Central - PubMed

Affiliation: Unité d'Entomologie fonctionnelle et évolutive, Gembloux Agro-Bio Tech, Université de Liège, Passage des Déportés 2, B-5030 Gembloux, Belgium. ludovic.sablon@doct.ulg.ac.be.

ABSTRACT
The Colorado potato beetle (CPB) has been a major insect pest to potato farming for over 150 years and various control methods have been established to reduce its impact on potato fields. Crop rotation and pesticide use are currently the most widely used approaches, although alternative methods are being developed. Here we review the role of various volatile and nonvolatile chemicals involved in behavior changes of CPB that may have potential for their control. First, we describe all volatile and nonvolatile chemicals involved in host plant localization and acceptance by CPB beetles, including glycoalcaloids and host plant volatiles used as kairomones. In the second section, we present the chemical signals used by CPB in intraspecific communication, including sex and aggregation pheromones. Some of these chemicals are used by natural enemies of CPBs to locate their prey and are presented in the third section. The last section of this review is devoted a discussion of the potential of some natural chemicals in biological control of CPB and to approaches that already reached efficient field applications.

No MeSH data available.


Related in: MedlinePlus

Green leaf volatiles and their isomers from potato as potential chemical signals for the Colorado potato beetle, Leptinotarsa decemlineata.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4553428&req=5

insects-04-00031-f003: Green leaf volatiles and their isomers from potato as potential chemical signals for the Colorado potato beetle, Leptinotarsa decemlineata.

Mentions: In 1979, Visser et al. characterized several VOCs called green leaf volatiles (GLVs) from potato with a successive vacuum steam distillation, freeze concentration, and extraction. (E)-2-hexen-l-ol, 1-hexanol, (Z)-3-hexen-l-ol, (E)-2-hexenal, and linalool were identified as main components of potato odor [61]. Visser [62] used electroantennograms (EAGs) to show that olfactory receptors of CPB adults responded to VOCs including (E)-2-hexen-1-ol, (Z)-3-hexen-1-ol, 1-hexanol, (E)-2-hexenal, hexanal and (Z)-3-hexenyl-acetate, i.e. GLVs, and to their isomers such as (E)-3-hexen-l-ol and (Z)-2-hexen-l-ol (Figure 3). Dickens [63] confirmed the EAG results of Visser [62] and demonstrated the importance of sexual maturity for the recognition and attraction of the plant VOCs. The sensitivity of CPB antennae to potato VOCs increased with the number of post emergence days and sexual maturation. Maximal antennal sensitivity was recorded at 6–8 days males and 12–14 days females [63]. VOCs were classified into five groups based on the development and magnitude of the EAGs they elicited: (1) chemicals with a strong response and a weak variability during sexual maturation such as (Z)-3-hexen-1-ol and (E)-2-hexen-1-ol; (2) chemicals with an intermediate response and slightly increasing response with maturity such as methyl salicylate, nonanal, and (Z)-3-hexenyl butyrate; (3) chemicals with a low response and a little variation with maturation, including indole, (±)-linalool, and decanal; (4) chemicals with a weak response and slightly increasing reaction during the maturation such as β-caryophyllene and β-selinene; (5) chemicals with a weak response and a decreasing activity with maturation, including 1,8-cineole, (R)-(+)-limonene, (S)-(−)-limonene, myrcene, (1R)-(+)-a-pinene, (1S)-(−)-a-pinene, a-humulene, and (+)-longifolene. Mitchell and McCashin [64] showed that CPB may also taste GLVs. They found that nerve cells housed within the galeal sensilla of both adult and larval CPB responded to primary alcohols (hexanol and heptanol) and other components found among the GLV mixture such as the monounsaturated (Z)- and (E)-isomers of hexen-1-ol and the six-carbon aldehyde analog, (E)-2-hexenal.


Chemical Ecology of the Colorado Potato Beetle, Leptinotarsa decemlineata (Say) (Coleoptera: Chrysomelidae), and Potential for Alternative Control Methods.

Sablon L, Dickens JC, Haubruge É, Verheggen FJ - Insects (2012)

Green leaf volatiles and their isomers from potato as potential chemical signals for the Colorado potato beetle, Leptinotarsa decemlineata.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4553428&req=5

insects-04-00031-f003: Green leaf volatiles and their isomers from potato as potential chemical signals for the Colorado potato beetle, Leptinotarsa decemlineata.
Mentions: In 1979, Visser et al. characterized several VOCs called green leaf volatiles (GLVs) from potato with a successive vacuum steam distillation, freeze concentration, and extraction. (E)-2-hexen-l-ol, 1-hexanol, (Z)-3-hexen-l-ol, (E)-2-hexenal, and linalool were identified as main components of potato odor [61]. Visser [62] used electroantennograms (EAGs) to show that olfactory receptors of CPB adults responded to VOCs including (E)-2-hexen-1-ol, (Z)-3-hexen-1-ol, 1-hexanol, (E)-2-hexenal, hexanal and (Z)-3-hexenyl-acetate, i.e. GLVs, and to their isomers such as (E)-3-hexen-l-ol and (Z)-2-hexen-l-ol (Figure 3). Dickens [63] confirmed the EAG results of Visser [62] and demonstrated the importance of sexual maturity for the recognition and attraction of the plant VOCs. The sensitivity of CPB antennae to potato VOCs increased with the number of post emergence days and sexual maturation. Maximal antennal sensitivity was recorded at 6–8 days males and 12–14 days females [63]. VOCs were classified into five groups based on the development and magnitude of the EAGs they elicited: (1) chemicals with a strong response and a weak variability during sexual maturation such as (Z)-3-hexen-1-ol and (E)-2-hexen-1-ol; (2) chemicals with an intermediate response and slightly increasing response with maturity such as methyl salicylate, nonanal, and (Z)-3-hexenyl butyrate; (3) chemicals with a low response and a little variation with maturation, including indole, (±)-linalool, and decanal; (4) chemicals with a weak response and slightly increasing reaction during the maturation such as β-caryophyllene and β-selinene; (5) chemicals with a weak response and a decreasing activity with maturation, including 1,8-cineole, (R)-(+)-limonene, (S)-(−)-limonene, myrcene, (1R)-(+)-a-pinene, (1S)-(−)-a-pinene, a-humulene, and (+)-longifolene. Mitchell and McCashin [64] showed that CPB may also taste GLVs. They found that nerve cells housed within the galeal sensilla of both adult and larval CPB responded to primary alcohols (hexanol and heptanol) and other components found among the GLV mixture such as the monounsaturated (Z)- and (E)-isomers of hexen-1-ol and the six-carbon aldehyde analog, (E)-2-hexenal.

Bottom Line: In the second section, we present the chemical signals used by CPB in intraspecific communication, including sex and aggregation pheromones.Some of these chemicals are used by natural enemies of CPBs to locate their prey and are presented in the third section.The last section of this review is devoted a discussion of the potential of some natural chemicals in biological control of CPB and to approaches that already reached efficient field applications.

View Article: PubMed Central - PubMed

Affiliation: Unité d'Entomologie fonctionnelle et évolutive, Gembloux Agro-Bio Tech, Université de Liège, Passage des Déportés 2, B-5030 Gembloux, Belgium. ludovic.sablon@doct.ulg.ac.be.

ABSTRACT
The Colorado potato beetle (CPB) has been a major insect pest to potato farming for over 150 years and various control methods have been established to reduce its impact on potato fields. Crop rotation and pesticide use are currently the most widely used approaches, although alternative methods are being developed. Here we review the role of various volatile and nonvolatile chemicals involved in behavior changes of CPB that may have potential for their control. First, we describe all volatile and nonvolatile chemicals involved in host plant localization and acceptance by CPB beetles, including glycoalcaloids and host plant volatiles used as kairomones. In the second section, we present the chemical signals used by CPB in intraspecific communication, including sex and aggregation pheromones. Some of these chemicals are used by natural enemies of CPBs to locate their prey and are presented in the third section. The last section of this review is devoted a discussion of the potential of some natural chemicals in biological control of CPB and to approaches that already reached efficient field applications.

No MeSH data available.


Related in: MedlinePlus