Limits...
The duality of temporal encoding - the intrinsic and extrinsic representation of time.

Golan R, Zakay D - Front Psychol (2015)

Bottom Line: We found a gradual increase in neural activation associated with the gradual increase in temporal variance within category selective areas.We concluded that temporal features are integral to perception and are simultaneously represented within category selective regions and globally within dedicated regions.Our second conclusion, drown from our covert procedure, is that time encoding, at its basic level, is an automated process that does not require attention allocated toward the temporal features nor does it require dedicated resources.

View Article: PubMed Central - PubMed

Affiliation: School of Psychological Sciences, Tel Aviv University Tel Aviv, Israel.

ABSTRACT
While time is well acknowledged for having a fundamental part in our perception, questions on how it is represented are still matters of great debate. One of the main issues in question is whether time is represented intrinsically at the neural level, or is it represented within dedicated brain regions. We used an fMRI block design to test if we can impose covert encoding of temporal features of faces and natural scenes stimuli within category selective neural populations by exposing subjects to four types of temporal variance, ranging from 0% up to 50% variance. We found a gradual increase in neural activation associated with the gradual increase in temporal variance within category selective areas. A second level analysis showed the same pattern of activations within known brain regions associated with time representation, such as the Cerebellum, the Caudate, and the Thalamus. We concluded that temporal features are integral to perception and are simultaneously represented within category selective regions and globally within dedicated regions. Our second conclusion, drown from our covert procedure, is that time encoding, at its basic level, is an automated process that does not require attention allocated toward the temporal features nor does it require dedicated resources.

No MeSH data available.


(A) Grand average of the mean percent signal change in rFFA for faces stimuli for all four conditions, showing a gradual increase in activation between conditions having variance in durations (i.e., 12.5, 25, and 50% variance) while the first condition with 0% variance showing a greater activation than the 12.5 and 25% variance conditions. (B) Grand average of FIR event time courses extracted from the rFFA; (C) Grand average of Fitted event time courses extracted from the rFFA.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4553368&req=5

Figure 4: (A) Grand average of the mean percent signal change in rFFA for faces stimuli for all four conditions, showing a gradual increase in activation between conditions having variance in durations (i.e., 12.5, 25, and 50% variance) while the first condition with 0% variance showing a greater activation than the 12.5 and 25% variance conditions. (B) Grand average of FIR event time courses extracted from the rFFA; (C) Grand average of Fitted event time courses extracted from the rFFA.

Mentions: As can be seen in Figures 4 and 5 we found that the 0% variance condition yielded a lower activation than the 50% variance condition both in rFFA [t(82) = -2.29, p = 0.025] and rPPA [t(76) = -2.48, p = 0.015]. Moreover, a gradual increase in mean activations appeared between the second, third, and fourth conditions in both the rFFA and the rPPA. The first condition yielded a higher activation than the second condition in both ROIs. A one-way ANOVA test over all four conditions revealed a significant main effect of the difference in mean activations for the rFFA with faces stimuli [F(3,164) = 7.77, p < 0.00007] and for the rPPA with houses stimuli [F(3,152) = 7.01, p = 0.0002]. A linear trend test using contrast coefficients of [-3, -1, 1, 3] yielded a significant effect in both rFFA [t(164) = 3.01, p = 0.003] and rPPA [t(152) = 2.68, p = 0.008].


The duality of temporal encoding - the intrinsic and extrinsic representation of time.

Golan R, Zakay D - Front Psychol (2015)

(A) Grand average of the mean percent signal change in rFFA for faces stimuli for all four conditions, showing a gradual increase in activation between conditions having variance in durations (i.e., 12.5, 25, and 50% variance) while the first condition with 0% variance showing a greater activation than the 12.5 and 25% variance conditions. (B) Grand average of FIR event time courses extracted from the rFFA; (C) Grand average of Fitted event time courses extracted from the rFFA.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4553368&req=5

Figure 4: (A) Grand average of the mean percent signal change in rFFA for faces stimuli for all four conditions, showing a gradual increase in activation between conditions having variance in durations (i.e., 12.5, 25, and 50% variance) while the first condition with 0% variance showing a greater activation than the 12.5 and 25% variance conditions. (B) Grand average of FIR event time courses extracted from the rFFA; (C) Grand average of Fitted event time courses extracted from the rFFA.
Mentions: As can be seen in Figures 4 and 5 we found that the 0% variance condition yielded a lower activation than the 50% variance condition both in rFFA [t(82) = -2.29, p = 0.025] and rPPA [t(76) = -2.48, p = 0.015]. Moreover, a gradual increase in mean activations appeared between the second, third, and fourth conditions in both the rFFA and the rPPA. The first condition yielded a higher activation than the second condition in both ROIs. A one-way ANOVA test over all four conditions revealed a significant main effect of the difference in mean activations for the rFFA with faces stimuli [F(3,164) = 7.77, p < 0.00007] and for the rPPA with houses stimuli [F(3,152) = 7.01, p = 0.0002]. A linear trend test using contrast coefficients of [-3, -1, 1, 3] yielded a significant effect in both rFFA [t(164) = 3.01, p = 0.003] and rPPA [t(152) = 2.68, p = 0.008].

Bottom Line: We found a gradual increase in neural activation associated with the gradual increase in temporal variance within category selective areas.We concluded that temporal features are integral to perception and are simultaneously represented within category selective regions and globally within dedicated regions.Our second conclusion, drown from our covert procedure, is that time encoding, at its basic level, is an automated process that does not require attention allocated toward the temporal features nor does it require dedicated resources.

View Article: PubMed Central - PubMed

Affiliation: School of Psychological Sciences, Tel Aviv University Tel Aviv, Israel.

ABSTRACT
While time is well acknowledged for having a fundamental part in our perception, questions on how it is represented are still matters of great debate. One of the main issues in question is whether time is represented intrinsically at the neural level, or is it represented within dedicated brain regions. We used an fMRI block design to test if we can impose covert encoding of temporal features of faces and natural scenes stimuli within category selective neural populations by exposing subjects to four types of temporal variance, ranging from 0% up to 50% variance. We found a gradual increase in neural activation associated with the gradual increase in temporal variance within category selective areas. A second level analysis showed the same pattern of activations within known brain regions associated with time representation, such as the Cerebellum, the Caudate, and the Thalamus. We concluded that temporal features are integral to perception and are simultaneously represented within category selective regions and globally within dedicated regions. Our second conclusion, drown from our covert procedure, is that time encoding, at its basic level, is an automated process that does not require attention allocated toward the temporal features nor does it require dedicated resources.

No MeSH data available.