Limits...
The duality of temporal encoding - the intrinsic and extrinsic representation of time.

Golan R, Zakay D - Front Psychol (2015)

Bottom Line: We found a gradual increase in neural activation associated with the gradual increase in temporal variance within category selective areas.We concluded that temporal features are integral to perception and are simultaneously represented within category selective regions and globally within dedicated regions.Our second conclusion, drown from our covert procedure, is that time encoding, at its basic level, is an automated process that does not require attention allocated toward the temporal features nor does it require dedicated resources.

View Article: PubMed Central - PubMed

Affiliation: School of Psychological Sciences, Tel Aviv University Tel Aviv, Israel.

ABSTRACT
While time is well acknowledged for having a fundamental part in our perception, questions on how it is represented are still matters of great debate. One of the main issues in question is whether time is represented intrinsically at the neural level, or is it represented within dedicated brain regions. We used an fMRI block design to test if we can impose covert encoding of temporal features of faces and natural scenes stimuli within category selective neural populations by exposing subjects to four types of temporal variance, ranging from 0% up to 50% variance. We found a gradual increase in neural activation associated with the gradual increase in temporal variance within category selective areas. A second level analysis showed the same pattern of activations within known brain regions associated with time representation, such as the Cerebellum, the Caudate, and the Thalamus. We concluded that temporal features are integral to perception and are simultaneously represented within category selective regions and globally within dedicated regions. Our second conclusion, drown from our covert procedure, is that time encoding, at its basic level, is an automated process that does not require attention allocated toward the temporal features nor does it require dedicated resources.

No MeSH data available.


Extracted ROIs based on the Face-Scene-Object functional localizer scans, as seen in one of the subjects. Green arrows pointing on the parahippocampal place area (PPA); red arrows pointing on the transverse occipital sulcus (TOS).
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4553368&req=5

Figure 3: Extracted ROIs based on the Face-Scene-Object functional localizer scans, as seen in one of the subjects. Green arrows pointing on the parahippocampal place area (PPA); red arrows pointing on the transverse occipital sulcus (TOS).

Mentions: The purpose of the Face-Scene localizer was to extract specific ROIs and to test how these ROIs respond to the temporal manipulation. We used the Faces > Objects contrast (p = 0.001 uncorrected) to identify the FFA (Figure 2 green arrows) and OFA (Figure 2 red arrows) and the Scene > Object contrast (p = 0.001 uncorrected) to identify the PPA (Figure 3 green arrow) and TOS (Figure 3 red arrow). Based on our findings and on previous studies (Kanwisher et al., 1997; Loffler et al., 2005; Rotshtein et al., 2005), we focused our analysis on activations in the right hemisphere (i.e., rFFA, rOFA, rPPA, and rTOS), which elicited stronger activations than in the left hemisphere (for example only 6 out of the 15 Ss showed left OFA activation).


The duality of temporal encoding - the intrinsic and extrinsic representation of time.

Golan R, Zakay D - Front Psychol (2015)

Extracted ROIs based on the Face-Scene-Object functional localizer scans, as seen in one of the subjects. Green arrows pointing on the parahippocampal place area (PPA); red arrows pointing on the transverse occipital sulcus (TOS).
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4553368&req=5

Figure 3: Extracted ROIs based on the Face-Scene-Object functional localizer scans, as seen in one of the subjects. Green arrows pointing on the parahippocampal place area (PPA); red arrows pointing on the transverse occipital sulcus (TOS).
Mentions: The purpose of the Face-Scene localizer was to extract specific ROIs and to test how these ROIs respond to the temporal manipulation. We used the Faces > Objects contrast (p = 0.001 uncorrected) to identify the FFA (Figure 2 green arrows) and OFA (Figure 2 red arrows) and the Scene > Object contrast (p = 0.001 uncorrected) to identify the PPA (Figure 3 green arrow) and TOS (Figure 3 red arrow). Based on our findings and on previous studies (Kanwisher et al., 1997; Loffler et al., 2005; Rotshtein et al., 2005), we focused our analysis on activations in the right hemisphere (i.e., rFFA, rOFA, rPPA, and rTOS), which elicited stronger activations than in the left hemisphere (for example only 6 out of the 15 Ss showed left OFA activation).

Bottom Line: We found a gradual increase in neural activation associated with the gradual increase in temporal variance within category selective areas.We concluded that temporal features are integral to perception and are simultaneously represented within category selective regions and globally within dedicated regions.Our second conclusion, drown from our covert procedure, is that time encoding, at its basic level, is an automated process that does not require attention allocated toward the temporal features nor does it require dedicated resources.

View Article: PubMed Central - PubMed

Affiliation: School of Psychological Sciences, Tel Aviv University Tel Aviv, Israel.

ABSTRACT
While time is well acknowledged for having a fundamental part in our perception, questions on how it is represented are still matters of great debate. One of the main issues in question is whether time is represented intrinsically at the neural level, or is it represented within dedicated brain regions. We used an fMRI block design to test if we can impose covert encoding of temporal features of faces and natural scenes stimuli within category selective neural populations by exposing subjects to four types of temporal variance, ranging from 0% up to 50% variance. We found a gradual increase in neural activation associated with the gradual increase in temporal variance within category selective areas. A second level analysis showed the same pattern of activations within known brain regions associated with time representation, such as the Cerebellum, the Caudate, and the Thalamus. We concluded that temporal features are integral to perception and are simultaneously represented within category selective regions and globally within dedicated regions. Our second conclusion, drown from our covert procedure, is that time encoding, at its basic level, is an automated process that does not require attention allocated toward the temporal features nor does it require dedicated resources.

No MeSH data available.