Limits...
Rheumatoid Arthritis and the Cervical Spine: A Review on the Role of Surgery.

Gillick JL, Wainwright J, Das K - Int J Rheumatol (2015)

Bottom Line: Cervical spine involvement in RA can pose a challenge to the clinician and the appropriate role of surgical intervention is controversial.Both the medical and surgical treatment options for RA have improved, so has the prognosis of the cervical spine disease.With the advent of disease modifying antirheumatic drugs (DMARDs), fewer patients are presenting with cervical spine manifestations of RA; however, those that do, now have improved surgical techniques available to them.

View Article: PubMed Central - PubMed

Affiliation: Department of Neurosurgery, NY Medical College, 19 Skyline Drive, Hawthorne, NY 10532, USA.

ABSTRACT
Rheumatoid arthritis (RA) is a chronic systemic inflammatory disease affecting a significant percentage of the population. The cervical spine is often affected in this disease and can present in the form of atlantoaxial instability (AAI), cranial settling (CS), or subaxial subluxation (SAS). Patients may present with symptoms and disability secondary to these entities but may also be neurologically intact. Cervical spine involvement in RA can pose a challenge to the clinician and the appropriate role of surgical intervention is controversial. The aim of this paper is to describe the pathology, pathophysiology, clinical manifestations, and diagnostic evaluation of rheumatoid arthritis in the cervical spine in order to provide a better understanding of the indications and options for surgery. Both the medical and surgical treatment options for RA have improved, so has the prognosis of the cervical spine disease. With the advent of disease modifying antirheumatic drugs (DMARDs), fewer patients are presenting with cervical spine manifestations of RA; however, those that do, now have improved surgical techniques available to them. We hope that, by reading this paper, the clinician is able to better evaluate patients with RA in the cervical spine and determine in which patients surgery is indicated.

No MeSH data available.


Related in: MedlinePlus

AP (a) and lateral (b) X-rays depicting a C1-2 fusion using C1 lateral mass and C2 pars screws.
© Copyright Policy - open-access
Related In: Results  -  Collection


getmorefigures.php?uid=PMC4553335&req=5

fig7: AP (a) and lateral (b) X-rays depicting a C1-2 fusion using C1 lateral mass and C2 pars screws.

Mentions: In general, the first procedure considered in the setting of AAI is a C1-2 fusion. This technique involves fusing axis to atlas, and several techniques exist. Gallie described the first technique in 1939 involving wiring and grafting [41]. Several authors have modified this technique [42–44]. The most commonly employed methods at this time involve C1/2 transarticular screw fixation or a combination of C1 lateral mass screws and C2 pars or pedicle screws. Magerl first described the use of C1-2 transarticular screws in 1986 [45, 46]. In this technique, 2 set screws are inserted through the C1-2 facets by a posterior approach. In addition, a midline bone graft may be inserted between C1 and C2 to provide a 3-point fixation [47]. Some surgeons may attempt to manually reduce the translational dislocation prior to fixation [40]. In 1994, Goel and Laheri proposed a plate and screw method for atlantoaxial fixation, which was later modified by Harms and Melcher in 2001, demonstrating the currently employed method of posterior C1 lateral mass screws and C2 pedicle or pars screws [48, 49]. In the Harms technique, polyaxial screws are inserted posteriorly into the lateral masses of C1 and into the pars of C2 bilaterally (Figure 7) [49]. If the pedicles of C2 are at least 6 mm wide, Alosh and colleagues suggest that pedicle screws may be placed. They demonstrated in a retrospective study of 93 patients and 170 screws that a pedicle diameter of less than 6 mm was associated with nearly a 2-fold increase in risk of cortical breach (37% versus 21%) [50]. It is also important for the surgeon to consider the course of the vertebral artery (VA) prior to C1/2 fusion. If the VA has an aberrant course, it may be unacceptably unsafe to place either C2 pedicle or C1/2 transarticular screws due to potential injury to the artery or violation of the foramen transversarium [51, 52]. C2 translaminar screws provide a safe alternative for fixation. These screws are inserted by placing a pilot hole at the junction of the spinous process and lamina along the cranial margin of the lamina. The angle of entry is kept in line with the slope of the lamina and the screw is inserted. The procedure is repeated along the caudal margin of the lamina on the contralateral side (Figure 8) [53].


Rheumatoid Arthritis and the Cervical Spine: A Review on the Role of Surgery.

Gillick JL, Wainwright J, Das K - Int J Rheumatol (2015)

AP (a) and lateral (b) X-rays depicting a C1-2 fusion using C1 lateral mass and C2 pars screws.
© Copyright Policy - open-access
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC4553335&req=5

fig7: AP (a) and lateral (b) X-rays depicting a C1-2 fusion using C1 lateral mass and C2 pars screws.
Mentions: In general, the first procedure considered in the setting of AAI is a C1-2 fusion. This technique involves fusing axis to atlas, and several techniques exist. Gallie described the first technique in 1939 involving wiring and grafting [41]. Several authors have modified this technique [42–44]. The most commonly employed methods at this time involve C1/2 transarticular screw fixation or a combination of C1 lateral mass screws and C2 pars or pedicle screws. Magerl first described the use of C1-2 transarticular screws in 1986 [45, 46]. In this technique, 2 set screws are inserted through the C1-2 facets by a posterior approach. In addition, a midline bone graft may be inserted between C1 and C2 to provide a 3-point fixation [47]. Some surgeons may attempt to manually reduce the translational dislocation prior to fixation [40]. In 1994, Goel and Laheri proposed a plate and screw method for atlantoaxial fixation, which was later modified by Harms and Melcher in 2001, demonstrating the currently employed method of posterior C1 lateral mass screws and C2 pedicle or pars screws [48, 49]. In the Harms technique, polyaxial screws are inserted posteriorly into the lateral masses of C1 and into the pars of C2 bilaterally (Figure 7) [49]. If the pedicles of C2 are at least 6 mm wide, Alosh and colleagues suggest that pedicle screws may be placed. They demonstrated in a retrospective study of 93 patients and 170 screws that a pedicle diameter of less than 6 mm was associated with nearly a 2-fold increase in risk of cortical breach (37% versus 21%) [50]. It is also important for the surgeon to consider the course of the vertebral artery (VA) prior to C1/2 fusion. If the VA has an aberrant course, it may be unacceptably unsafe to place either C2 pedicle or C1/2 transarticular screws due to potential injury to the artery or violation of the foramen transversarium [51, 52]. C2 translaminar screws provide a safe alternative for fixation. These screws are inserted by placing a pilot hole at the junction of the spinous process and lamina along the cranial margin of the lamina. The angle of entry is kept in line with the slope of the lamina and the screw is inserted. The procedure is repeated along the caudal margin of the lamina on the contralateral side (Figure 8) [53].

Bottom Line: Cervical spine involvement in RA can pose a challenge to the clinician and the appropriate role of surgical intervention is controversial.Both the medical and surgical treatment options for RA have improved, so has the prognosis of the cervical spine disease.With the advent of disease modifying antirheumatic drugs (DMARDs), fewer patients are presenting with cervical spine manifestations of RA; however, those that do, now have improved surgical techniques available to them.

View Article: PubMed Central - PubMed

Affiliation: Department of Neurosurgery, NY Medical College, 19 Skyline Drive, Hawthorne, NY 10532, USA.

ABSTRACT
Rheumatoid arthritis (RA) is a chronic systemic inflammatory disease affecting a significant percentage of the population. The cervical spine is often affected in this disease and can present in the form of atlantoaxial instability (AAI), cranial settling (CS), or subaxial subluxation (SAS). Patients may present with symptoms and disability secondary to these entities but may also be neurologically intact. Cervical spine involvement in RA can pose a challenge to the clinician and the appropriate role of surgical intervention is controversial. The aim of this paper is to describe the pathology, pathophysiology, clinical manifestations, and diagnostic evaluation of rheumatoid arthritis in the cervical spine in order to provide a better understanding of the indications and options for surgery. Both the medical and surgical treatment options for RA have improved, so has the prognosis of the cervical spine disease. With the advent of disease modifying antirheumatic drugs (DMARDs), fewer patients are presenting with cervical spine manifestations of RA; however, those that do, now have improved surgical techniques available to them. We hope that, by reading this paper, the clinician is able to better evaluate patients with RA in the cervical spine and determine in which patients surgery is indicated.

No MeSH data available.


Related in: MedlinePlus