Limits...
An OFDM Receiver with Frequency Domain Diversity Combined Impulsive Noise Canceller for Underwater Network.

Saotome R, Hai TM, Matsuda Y, Suzuki T, Wada T - ScientificWorldJournal (2015)

Bottom Line: The OFDM receiver utilizes 20-28 KHz ultrasonic channel and subcarrier spacing of 46.875 Hz (MODE3) and 93.750 Hz (MODE2) OFDM modulations.In addition, the paper shows Impulsive Noise distribution data measured at a fishing port in Okinawa and at a barge in Shizuoka prefectures and then proposed diversity OFDM transceivers architecture and experimental results are described.By the proposed Impulsive Noise Canceller, frame bit error rate has been decreased by 20-30%.

View Article: PubMed Central - PubMed

Affiliation: Department of Information Engineering, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213, Japan.

ABSTRACT
In order to explore marine natural resources using remote robotic sensor or to enable rapid information exchange between ROV (remotely operated vehicles), AUV (autonomous underwater vehicle), divers, and ships, ultrasonic underwater communication systems are used. However, if the communication system is applied to rich living creature marine environment such as shallow sea, it suffers from generated Impulsive Noise so-called Shrimp Noise, which is randomly generated in time domain and seriously degrades communication performance in underwater acoustic network. With the purpose of supporting high performance underwater communication, a robust digital communication method for Impulsive Noise environments is necessary. In this paper, we propose OFDM ultrasonic communication system with diversity receiver. The main feature of the receiver is a newly proposed Frequency Domain Diversity Combined Impulsive Noise Canceller. The OFDM receiver utilizes 20-28 KHz ultrasonic channel and subcarrier spacing of 46.875 Hz (MODE3) and 93.750 Hz (MODE2) OFDM modulations. In addition, the paper shows Impulsive Noise distribution data measured at a fishing port in Okinawa and at a barge in Shizuoka prefectures and then proposed diversity OFDM transceivers architecture and experimental results are described. By the proposed Impulsive Noise Canceller, frame bit error rate has been decreased by 20-30%.

No MeSH data available.


Application of underwater networking.
© Copyright Policy - open-access
Related In: Results  -  Collection


getmorefigures.php?uid=PMC4553320&req=5

fig1: Application of underwater networking.

Mentions: Underwater wireless communication system [1] will offer a wide variety of applications such as natural disaster warning, remote control of offshore objects, and discovery of new resources at the bottom of ocean. Emerging underwater wireless network devices can be equipped onto underwater vehicles or robots with sensors and video cameras. Then system in ships can access those sensors and video cameras through underwater wireless network by acoustic wireless link. Figure 1 shows an example to control a bottom sea ROV (remotely operated vehicles), which engages exploring natural resources by sensors, from water surface operator in ship through underwater network. Since many living creatures in marine usually attach to communication devices and they generate impulse type acoustic noise as an interference, a communication system for underwater application has to be robust for this Impulsive Noise. Then high bandwidth acoustic communication system, which is robust for living creature generating Impulsive Noise, so-called Shrimp Noise, is required.


An OFDM Receiver with Frequency Domain Diversity Combined Impulsive Noise Canceller for Underwater Network.

Saotome R, Hai TM, Matsuda Y, Suzuki T, Wada T - ScientificWorldJournal (2015)

Application of underwater networking.
© Copyright Policy - open-access
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC4553320&req=5

fig1: Application of underwater networking.
Mentions: Underwater wireless communication system [1] will offer a wide variety of applications such as natural disaster warning, remote control of offshore objects, and discovery of new resources at the bottom of ocean. Emerging underwater wireless network devices can be equipped onto underwater vehicles or robots with sensors and video cameras. Then system in ships can access those sensors and video cameras through underwater wireless network by acoustic wireless link. Figure 1 shows an example to control a bottom sea ROV (remotely operated vehicles), which engages exploring natural resources by sensors, from water surface operator in ship through underwater network. Since many living creatures in marine usually attach to communication devices and they generate impulse type acoustic noise as an interference, a communication system for underwater application has to be robust for this Impulsive Noise. Then high bandwidth acoustic communication system, which is robust for living creature generating Impulsive Noise, so-called Shrimp Noise, is required.

Bottom Line: The OFDM receiver utilizes 20-28 KHz ultrasonic channel and subcarrier spacing of 46.875 Hz (MODE3) and 93.750 Hz (MODE2) OFDM modulations.In addition, the paper shows Impulsive Noise distribution data measured at a fishing port in Okinawa and at a barge in Shizuoka prefectures and then proposed diversity OFDM transceivers architecture and experimental results are described.By the proposed Impulsive Noise Canceller, frame bit error rate has been decreased by 20-30%.

View Article: PubMed Central - PubMed

Affiliation: Department of Information Engineering, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213, Japan.

ABSTRACT
In order to explore marine natural resources using remote robotic sensor or to enable rapid information exchange between ROV (remotely operated vehicles), AUV (autonomous underwater vehicle), divers, and ships, ultrasonic underwater communication systems are used. However, if the communication system is applied to rich living creature marine environment such as shallow sea, it suffers from generated Impulsive Noise so-called Shrimp Noise, which is randomly generated in time domain and seriously degrades communication performance in underwater acoustic network. With the purpose of supporting high performance underwater communication, a robust digital communication method for Impulsive Noise environments is necessary. In this paper, we propose OFDM ultrasonic communication system with diversity receiver. The main feature of the receiver is a newly proposed Frequency Domain Diversity Combined Impulsive Noise Canceller. The OFDM receiver utilizes 20-28 KHz ultrasonic channel and subcarrier spacing of 46.875 Hz (MODE3) and 93.750 Hz (MODE2) OFDM modulations. In addition, the paper shows Impulsive Noise distribution data measured at a fishing port in Okinawa and at a barge in Shizuoka prefectures and then proposed diversity OFDM transceivers architecture and experimental results are described. By the proposed Impulsive Noise Canceller, frame bit error rate has been decreased by 20-30%.

No MeSH data available.