Limits...
Electron beam effect on biomaterials I: focusing on bone graft materials.

Kim SM, Fan H, Cho YJ, Eo MY, Park JH, Kim BN, Lee BC, Lee SK - Biomater Res (2015)

Bottom Line: Additional in vitro analyses were performed by elementary analysis using field emission scanning electron microscopy (FE-SEM), scanning electron microscopy (SEM), X-ray diffraction (XRD) and confocal laser scanning microscopy (CLSM).In vivo clinical, radiographic, and micro-computed tomography (Micro-CT) with bone marrow density (BMD) analysis was performed in 8- and 16-week-old Spraque-Dawley rats with calvarial defect grafts.These novel results and conclusions are the effects of electron beam irradiation.

View Article: PubMed Central - PubMed

Affiliation: Department of Oral and Maxillofacial Surgery, Dental Research Institute, School of Dentistry, Seoul National University, 62-1 Changgyeonggungno, Jongno-gu, Seoul 110-768 South Korea.

ABSTRACT

Background: To develop biocompatible bony regeneration materials, allogenic, xenogenic and synthetic bones have been irradiated by an electron beam to change the basic structures of their inorganic materials. The optimal electron beam energy and individual dose have not been established for maximizing the bony regeneration capacity in electron beam irradiated bone.

Results: Commercial products consisting of four allogenic bones, six xenogenic bones, and six synthetic bones were used in this study. We used 1.0-MeV and 2.0 MeV linear accelerators (power: 100 KW, pressure; 115 kPa, temperature; -30 to 120°C, sensor sensitivity: 0.1-1.2 mV/kPa, generating power sensitivity: 44.75 mV/kPa, supply voltage: 50.25 V), and a microtrone with different individual irradiation doses such as 60 kGy and 120 kGy. Additional in vitro analyses were performed by elementary analysis using field emission scanning electron microscopy (FE-SEM), scanning electron microscopy (SEM), X-ray diffraction (XRD) and confocal laser scanning microscopy (CLSM). In vivo clinical, radiographic, and micro-computed tomography (Micro-CT) with bone marrow density (BMD) analysis was performed in 8- and 16-week-old Spraque-Dawley rats with calvarial defect grafts.

Conclusions: Electron beam irradiation of bony substitutes has four main effects: the cross-linking of biphasic calcium phosphate bony apatite, chain-scissioning, the induction of rheological changes, and microbiological sterilization. These novel results and conclusions are the effects of electron beam irradiation.

No MeSH data available.


Related in: MedlinePlus

Horizontal radiographic views of the BMP® implanted frontal bone after 8 weeks, no beam treatment (A), 1 MeV-60 kGy (B), 1 MeV-120 kGy (C), 2 MeV-60 kGy (D), and 2 MeV-120 kGy (E).
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC4552193&req=5

Fig7: Horizontal radiographic views of the BMP® implanted frontal bone after 8 weeks, no beam treatment (A), 1 MeV-60 kGy (B), 1 MeV-120 kGy (C), 2 MeV-60 kGy (D), and 2 MeV-120 kGy (E).

Mentions: Incomplete bony healing was found in the horizontal radiographic view in most animals after 8 weeks under different electron beam energy and radiation conditions (Figure 7). There was less radiopacity observed in the 16 weeks specimen as compared to the 8 weeks specimen. No remarkable changes were found according to different electron beam energy or irradiation dose. In the comparison of the coronal Micro-CT views of the regenerated frontal bone under each irradiation condition after 8 and 16 weeks, many of the electron beam-irradiated xenogenic and synthetic bone materials become hard and dense after 16 weeks of observation (Figure 8). The BMD after 16 weeks was calculated to be higher than that after 8 weeks in most of the synthetic bone materials, but this pattern was not typical in the allogenic and xenogenic bone materials. This result suggested that any remaining bone particles did not undergo osteogenesis. For example, the BMD of BMP® was statistically higher under 1 MeV-60 kGy and 2 MeV-60 kGy conditions, but xenogenic bone such as Bio-cera® showed no special characteristics and did not show statistical significance (Figure 9).Figure 7


Electron beam effect on biomaterials I: focusing on bone graft materials.

Kim SM, Fan H, Cho YJ, Eo MY, Park JH, Kim BN, Lee BC, Lee SK - Biomater Res (2015)

Horizontal radiographic views of the BMP® implanted frontal bone after 8 weeks, no beam treatment (A), 1 MeV-60 kGy (B), 1 MeV-120 kGy (C), 2 MeV-60 kGy (D), and 2 MeV-120 kGy (E).
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC4552193&req=5

Fig7: Horizontal radiographic views of the BMP® implanted frontal bone after 8 weeks, no beam treatment (A), 1 MeV-60 kGy (B), 1 MeV-120 kGy (C), 2 MeV-60 kGy (D), and 2 MeV-120 kGy (E).
Mentions: Incomplete bony healing was found in the horizontal radiographic view in most animals after 8 weeks under different electron beam energy and radiation conditions (Figure 7). There was less radiopacity observed in the 16 weeks specimen as compared to the 8 weeks specimen. No remarkable changes were found according to different electron beam energy or irradiation dose. In the comparison of the coronal Micro-CT views of the regenerated frontal bone under each irradiation condition after 8 and 16 weeks, many of the electron beam-irradiated xenogenic and synthetic bone materials become hard and dense after 16 weeks of observation (Figure 8). The BMD after 16 weeks was calculated to be higher than that after 8 weeks in most of the synthetic bone materials, but this pattern was not typical in the allogenic and xenogenic bone materials. This result suggested that any remaining bone particles did not undergo osteogenesis. For example, the BMD of BMP® was statistically higher under 1 MeV-60 kGy and 2 MeV-60 kGy conditions, but xenogenic bone such as Bio-cera® showed no special characteristics and did not show statistical significance (Figure 9).Figure 7

Bottom Line: Additional in vitro analyses were performed by elementary analysis using field emission scanning electron microscopy (FE-SEM), scanning electron microscopy (SEM), X-ray diffraction (XRD) and confocal laser scanning microscopy (CLSM).In vivo clinical, radiographic, and micro-computed tomography (Micro-CT) with bone marrow density (BMD) analysis was performed in 8- and 16-week-old Spraque-Dawley rats with calvarial defect grafts.These novel results and conclusions are the effects of electron beam irradiation.

View Article: PubMed Central - PubMed

Affiliation: Department of Oral and Maxillofacial Surgery, Dental Research Institute, School of Dentistry, Seoul National University, 62-1 Changgyeonggungno, Jongno-gu, Seoul 110-768 South Korea.

ABSTRACT

Background: To develop biocompatible bony regeneration materials, allogenic, xenogenic and synthetic bones have been irradiated by an electron beam to change the basic structures of their inorganic materials. The optimal electron beam energy and individual dose have not been established for maximizing the bony regeneration capacity in electron beam irradiated bone.

Results: Commercial products consisting of four allogenic bones, six xenogenic bones, and six synthetic bones were used in this study. We used 1.0-MeV and 2.0 MeV linear accelerators (power: 100 KW, pressure; 115 kPa, temperature; -30 to 120°C, sensor sensitivity: 0.1-1.2 mV/kPa, generating power sensitivity: 44.75 mV/kPa, supply voltage: 50.25 V), and a microtrone with different individual irradiation doses such as 60 kGy and 120 kGy. Additional in vitro analyses were performed by elementary analysis using field emission scanning electron microscopy (FE-SEM), scanning electron microscopy (SEM), X-ray diffraction (XRD) and confocal laser scanning microscopy (CLSM). In vivo clinical, radiographic, and micro-computed tomography (Micro-CT) with bone marrow density (BMD) analysis was performed in 8- and 16-week-old Spraque-Dawley rats with calvarial defect grafts.

Conclusions: Electron beam irradiation of bony substitutes has four main effects: the cross-linking of biphasic calcium phosphate bony apatite, chain-scissioning, the induction of rheological changes, and microbiological sterilization. These novel results and conclusions are the effects of electron beam irradiation.

No MeSH data available.


Related in: MedlinePlus