Limits...
Electron beam effect on biomaterials I: focusing on bone graft materials.

Kim SM, Fan H, Cho YJ, Eo MY, Park JH, Kim BN, Lee BC, Lee SK - Biomater Res (2015)

Bottom Line: We used 1.0-MeV and 2.0 MeV linear accelerators (power: 100 KW, pressure; 115 kPa, temperature; -30 to 120°C, sensor sensitivity: 0.1-1.2 mV/kPa, generating power sensitivity: 44.75 mV/kPa, supply voltage: 50.25 V), and a microtrone with different individual irradiation doses such as 60 kGy and 120 kGy.Additional in vitro analyses were performed by elementary analysis using field emission scanning electron microscopy (FE-SEM), scanning electron microscopy (SEM), X-ray diffraction (XRD) and confocal laser scanning microscopy (CLSM).These novel results and conclusions are the effects of electron beam irradiation.

View Article: PubMed Central - PubMed

Affiliation: Department of Oral and Maxillofacial Surgery, Dental Research Institute, School of Dentistry, Seoul National University, 62-1 Changgyeonggungno, Jongno-gu, Seoul 110-768 South Korea.

ABSTRACT

Background: To develop biocompatible bony regeneration materials, allogenic, xenogenic and synthetic bones have been irradiated by an electron beam to change the basic structures of their inorganic materials. The optimal electron beam energy and individual dose have not been established for maximizing the bony regeneration capacity in electron beam irradiated bone.

Results: Commercial products consisting of four allogenic bones, six xenogenic bones, and six synthetic bones were used in this study. We used 1.0-MeV and 2.0 MeV linear accelerators (power: 100 KW, pressure; 115 kPa, temperature; -30 to 120°C, sensor sensitivity: 0.1-1.2 mV/kPa, generating power sensitivity: 44.75 mV/kPa, supply voltage: 50.25 V), and a microtrone with different individual irradiation doses such as 60 kGy and 120 kGy. Additional in vitro analyses were performed by elementary analysis using field emission scanning electron microscopy (FE-SEM), scanning electron microscopy (SEM), X-ray diffraction (XRD) and confocal laser scanning microscopy (CLSM). In vivo clinical, radiographic, and micro-computed tomography (Micro-CT) with bone marrow density (BMD) analysis was performed in 8- and 16-week-old Spraque-Dawley rats with calvarial defect grafts.

Conclusions: Electron beam irradiation of bony substitutes has four main effects: the cross-linking of biphasic calcium phosphate bony apatite, chain-scissioning, the induction of rheological changes, and microbiological sterilization. These novel results and conclusions are the effects of electron beam irradiation.

No MeSH data available.


Related in: MedlinePlus

Elementary analysis of BBP® and Bio-cera® according to the different conditions of EBI.
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC4552193&req=5

Fig5: Elementary analysis of BBP® and Bio-cera® according to the different conditions of EBI.

Mentions: In the elementary analysis of the allogenic and synthetic bone materials, no significant difference was found in the carbon, oxygen, calcium, and phosphorus components. In the BBP® and Bio-cera® allogenic bone materials, some differences according to the irradiaton conditions were found, but were not significant (Figure 5). The XRD patterns of the allogenic, xenogenic, and synthetic bone were identical, with several strong X-ray deflection peaks that did not differ with different conditions of electron beam energy or irradiation dose (Figure 6). By the three-dimensional construction of less-than-0.1-mm sized continuous optical sections, each specimen had their own CLSM images constructed. There were no differences observed before and after EBI in each specimen.Figure 5


Electron beam effect on biomaterials I: focusing on bone graft materials.

Kim SM, Fan H, Cho YJ, Eo MY, Park JH, Kim BN, Lee BC, Lee SK - Biomater Res (2015)

Elementary analysis of BBP® and Bio-cera® according to the different conditions of EBI.
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC4552193&req=5

Fig5: Elementary analysis of BBP® and Bio-cera® according to the different conditions of EBI.
Mentions: In the elementary analysis of the allogenic and synthetic bone materials, no significant difference was found in the carbon, oxygen, calcium, and phosphorus components. In the BBP® and Bio-cera® allogenic bone materials, some differences according to the irradiaton conditions were found, but were not significant (Figure 5). The XRD patterns of the allogenic, xenogenic, and synthetic bone were identical, with several strong X-ray deflection peaks that did not differ with different conditions of electron beam energy or irradiation dose (Figure 6). By the three-dimensional construction of less-than-0.1-mm sized continuous optical sections, each specimen had their own CLSM images constructed. There were no differences observed before and after EBI in each specimen.Figure 5

Bottom Line: We used 1.0-MeV and 2.0 MeV linear accelerators (power: 100 KW, pressure; 115 kPa, temperature; -30 to 120°C, sensor sensitivity: 0.1-1.2 mV/kPa, generating power sensitivity: 44.75 mV/kPa, supply voltage: 50.25 V), and a microtrone with different individual irradiation doses such as 60 kGy and 120 kGy.Additional in vitro analyses were performed by elementary analysis using field emission scanning electron microscopy (FE-SEM), scanning electron microscopy (SEM), X-ray diffraction (XRD) and confocal laser scanning microscopy (CLSM).These novel results and conclusions are the effects of electron beam irradiation.

View Article: PubMed Central - PubMed

Affiliation: Department of Oral and Maxillofacial Surgery, Dental Research Institute, School of Dentistry, Seoul National University, 62-1 Changgyeonggungno, Jongno-gu, Seoul 110-768 South Korea.

ABSTRACT

Background: To develop biocompatible bony regeneration materials, allogenic, xenogenic and synthetic bones have been irradiated by an electron beam to change the basic structures of their inorganic materials. The optimal electron beam energy and individual dose have not been established for maximizing the bony regeneration capacity in electron beam irradiated bone.

Results: Commercial products consisting of four allogenic bones, six xenogenic bones, and six synthetic bones were used in this study. We used 1.0-MeV and 2.0 MeV linear accelerators (power: 100 KW, pressure; 115 kPa, temperature; -30 to 120°C, sensor sensitivity: 0.1-1.2 mV/kPa, generating power sensitivity: 44.75 mV/kPa, supply voltage: 50.25 V), and a microtrone with different individual irradiation doses such as 60 kGy and 120 kGy. Additional in vitro analyses were performed by elementary analysis using field emission scanning electron microscopy (FE-SEM), scanning electron microscopy (SEM), X-ray diffraction (XRD) and confocal laser scanning microscopy (CLSM). In vivo clinical, radiographic, and micro-computed tomography (Micro-CT) with bone marrow density (BMD) analysis was performed in 8- and 16-week-old Spraque-Dawley rats with calvarial defect grafts.

Conclusions: Electron beam irradiation of bony substitutes has four main effects: the cross-linking of biphasic calcium phosphate bony apatite, chain-scissioning, the induction of rheological changes, and microbiological sterilization. These novel results and conclusions are the effects of electron beam irradiation.

No MeSH data available.


Related in: MedlinePlus