Limits...
Regeneration of rabbit calvarial defects using cells-implanted nano-hydroxyapatite coated silk scaffolds.

Park JY, Yang C, Jung IH, Lim HC, Lee JS, Jung UW, Seo YK, Park JK, Choi SH - Biomater Res (2015)

Bottom Line: New bone formation was observed in the 4 week groups occurring from the periphery of the defects and the silk fibers were closely integrated with the new bone.There was no significant difference in the amount of bone formation between the SS group and the DPSS and PDLSS groups.However, there was no evidence to suggest that the addition of hDPCs and hPDLCs to the current rabbit calvarial defect model can produce an early effect in augmenting osteogenesis.

View Article: PubMed Central - PubMed

Affiliation: Department of Periodontology, Research Institute of Periodontal Regeneration, Yonsei University College of Dentistry, Seoul, South Korea.

ABSTRACT

Background: The aim of this study was to characterize the efficacy of nano-hydroxyapatite-coated silk fibroin constructs as a scaffold for bone tissue engineering and to determine the osteogenic effect of human dental pulp and periodontal ligament derived cells at an early stage of healing in rabbits. 3D silk fibroin constructs were developed and coated using nano-hydroxyapatite crystals. Dental pulp and periodontal ligament cells from extracted human third molars were cultured and seeded onto the silk scaffolds prior to in vivo implantation into 8 male New Zealand White rabbits. Four circular windows 8 mm in diameter were created in the calvarium of each animal. The defects were randomly allocated to the groups; (1) silk scaffold with dental pulp cells (DPSS), (2) silk scaffold with PDL cells (PDLSS), (3) normal saline-soaked silk scaffold (SS), and (4) empty control. The animals were sacrificed 2 (n = 4) or 4 weeks (n = 4) postoperatively. The characteristics of the silk scaffolds before and after cell seeding were analyzed using SEM. Samples were collected for histologic and histomorphometic analysis. ANOVA was used for statistical analysis.

Result: Histologic view of the experimental sites showed well-maintained structure of the silk scaffolds mostly unresorbed at 4 weeks. The SEM observations after cell-seeding revealed attachment of the cells onto silk fibroin with production of extracellular matrix. New bone formation was observed in the 4 week groups occurring from the periphery of the defects and the silk fibers were closely integrated with the new bone. There was no significant difference in the amount of bone formation between the SS group and the DPSS and PDLSS groups.

Conclusion: Within the limitations of this study, silk scaffold is a biocompatible material with potential expediency as an osteoconductive scaffold in bone tissue engineering. However, there was no evidence to suggest that the addition of hDPCs and hPDLCs to the current rabbit calvarial defect model can produce an early effect in augmenting osteogenesis.

No MeSH data available.


Histological view of the groups at 4 weeks postoperatively. A – Control group shows negligible amount of bone formation. B – SS group, C – PDLSS group, D – DPSS groups all display early bone formation at the periphery of the defects shown by the arrows. ×40 magnification, Mason’s trichrome staining.
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC4552159&req=5

Fig5: Histological view of the groups at 4 weeks postoperatively. A – Control group shows negligible amount of bone formation. B – SS group, C – PDLSS group, D – DPSS groups all display early bone formation at the periphery of the defects shown by the arrows. ×40 magnification, Mason’s trichrome staining.

Mentions: At 4 weeks, the inflammatory cells no longer existed around the fibrous network. Angiogenesis had occurred surrounding the fibrous bundles evident by the appearance of blood vessels, however none were seen to penetrate the internal structure of the porous network. ECM appeared visibly denser than at 2 weeks and early new bone formation was observed occurring mainly from the periphery of the defects. The newly formed bone was seen to be in close contact with the individual fibers of silk scaffold (Figure 5).Figure 5


Regeneration of rabbit calvarial defects using cells-implanted nano-hydroxyapatite coated silk scaffolds.

Park JY, Yang C, Jung IH, Lim HC, Lee JS, Jung UW, Seo YK, Park JK, Choi SH - Biomater Res (2015)

Histological view of the groups at 4 weeks postoperatively. A – Control group shows negligible amount of bone formation. B – SS group, C – PDLSS group, D – DPSS groups all display early bone formation at the periphery of the defects shown by the arrows. ×40 magnification, Mason’s trichrome staining.
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC4552159&req=5

Fig5: Histological view of the groups at 4 weeks postoperatively. A – Control group shows negligible amount of bone formation. B – SS group, C – PDLSS group, D – DPSS groups all display early bone formation at the periphery of the defects shown by the arrows. ×40 magnification, Mason’s trichrome staining.
Mentions: At 4 weeks, the inflammatory cells no longer existed around the fibrous network. Angiogenesis had occurred surrounding the fibrous bundles evident by the appearance of blood vessels, however none were seen to penetrate the internal structure of the porous network. ECM appeared visibly denser than at 2 weeks and early new bone formation was observed occurring mainly from the periphery of the defects. The newly formed bone was seen to be in close contact with the individual fibers of silk scaffold (Figure 5).Figure 5

Bottom Line: New bone formation was observed in the 4 week groups occurring from the periphery of the defects and the silk fibers were closely integrated with the new bone.There was no significant difference in the amount of bone formation between the SS group and the DPSS and PDLSS groups.However, there was no evidence to suggest that the addition of hDPCs and hPDLCs to the current rabbit calvarial defect model can produce an early effect in augmenting osteogenesis.

View Article: PubMed Central - PubMed

Affiliation: Department of Periodontology, Research Institute of Periodontal Regeneration, Yonsei University College of Dentistry, Seoul, South Korea.

ABSTRACT

Background: The aim of this study was to characterize the efficacy of nano-hydroxyapatite-coated silk fibroin constructs as a scaffold for bone tissue engineering and to determine the osteogenic effect of human dental pulp and periodontal ligament derived cells at an early stage of healing in rabbits. 3D silk fibroin constructs were developed and coated using nano-hydroxyapatite crystals. Dental pulp and periodontal ligament cells from extracted human third molars were cultured and seeded onto the silk scaffolds prior to in vivo implantation into 8 male New Zealand White rabbits. Four circular windows 8 mm in diameter were created in the calvarium of each animal. The defects were randomly allocated to the groups; (1) silk scaffold with dental pulp cells (DPSS), (2) silk scaffold with PDL cells (PDLSS), (3) normal saline-soaked silk scaffold (SS), and (4) empty control. The animals were sacrificed 2 (n = 4) or 4 weeks (n = 4) postoperatively. The characteristics of the silk scaffolds before and after cell seeding were analyzed using SEM. Samples were collected for histologic and histomorphometic analysis. ANOVA was used for statistical analysis.

Result: Histologic view of the experimental sites showed well-maintained structure of the silk scaffolds mostly unresorbed at 4 weeks. The SEM observations after cell-seeding revealed attachment of the cells onto silk fibroin with production of extracellular matrix. New bone formation was observed in the 4 week groups occurring from the periphery of the defects and the silk fibers were closely integrated with the new bone. There was no significant difference in the amount of bone formation between the SS group and the DPSS and PDLSS groups.

Conclusion: Within the limitations of this study, silk scaffold is a biocompatible material with potential expediency as an osteoconductive scaffold in bone tissue engineering. However, there was no evidence to suggest that the addition of hDPCs and hPDLCs to the current rabbit calvarial defect model can produce an early effect in augmenting osteogenesis.

No MeSH data available.