Limits...
Intraventricular hemorrhage in asphyxiated newborns treated with hypothermia: a look into incidence, timing and risk factors.

Al Yazidi G, Boudes E, Tan X, Saint-Martin C, Shevell M, Wintermark P - BMC Pediatr (2015)

Bottom Line: In addition, we compared their general characteristics with those not developing IVH.The asphyxiated newborns developing IVH also presented more frequently with persistent pulmonary hypertension, hypotension, thrombocytopenia and coagulopathy (p = 0.03).Efforts should be directed towards maintaining hemodynamic stability in these patients, even during the rewarming.

View Article: PubMed Central - PubMed

Affiliation: Division of Pediatric Neurology, Department of Pediatrics, Montreal Children's Hospital, McGill University, Montreal, Canada.

ABSTRACT

Background: Intraventricular hemorrhage (IVH) is uncommon in term newborns. Asphyxia and hypothermia have been mentioned separately as possible risk factors of IVH, since they might cause fluctuations of cerebral blood flow. The aim of this study was to assess the incidence, the timing, and the risk factors of intraventricular hemorrhage (IVH) in term asphyxiated newborns treated with hypothermia.

Methods: We conducted a prospective cohort study of all term asphyxiated newborns treated with hypothermia from August 2008 to June 2013. The presence or not of IVH was assessed using brain magnetic resonance imaging (MRI) performed after the hypothermia treatment was completed or using head ultrasound during the hypothermia treatment. For these newborns, to determine the timing of IVH, we retrospectively reviewed if they had other brain imaging studies performed during their neonatal hospitalization stay. In addition, we compared their general characteristics with those not developing IVH.

Results: One hundred and sixty asphyxiated newborns met the criteria for hypothermia. Fifteen of these newborns developed IVH, leading to an estimate of 9% (95% CI: 5.3-15.0%) of IVH in this population of newborns. Fifty-three percent had hemorrhage limited to the choroid plexus or IVH without ventricular dilatation; 47% had IVH with ventricular dilatation or parenchymal hemorrhage. Sixty-seven percent had an initial normal brain imaging; the diagnostic brain imaging that demonstrated the IVH was obtained either during cooling (in 30%), within 24 h of the rewarming (in 30%), or 24 h after the rewarming (in 40%). Recurrent seizures were the presenting symptom of IVH during the rewarming in 20% of the newborns. Coagulopathy was more frequent in the asphyxiated newborns developing IVH (p < 0.001). The asphyxiated newborns developing IVH also presented more frequently with persistent pulmonary hypertension, hypotension, thrombocytopenia and coagulopathy (p = 0.03).

Conclusions: The asphyxiated newborns treated with hypothermia appear to be at an increased risk of IVH, especially those with significant hemodynamic instability. IVH seems to develop during late hypothermia and rewarming. Efforts should be directed towards maintaining hemodynamic stability in these patients, even during the rewarming.

No MeSH data available.


Related in: MedlinePlus

Brain magnetic resonance imaging in asphyxiated newborns treated with hypothermia who developed intraventricular hemorrhage, axial T2-weighted imaging (superior row) and coronal T2-weighted imaging (inferior row). a Brain magnetic resonance imaging in an asphyxiated newborn developing hemorrhage limited to the choroid plexus in the lateral ventricle (thick arrows). b Brain magnetic resonance imaging in an asphyxiated newborn developing an IVH without ventricular dilatation, showing the intraventricular hemorrhage in the lateral ventricles and the third ventricle (thick arrows) without dilatation of the ventricles. c Brain magnetic resonance imaging in an asphyxiated newborn developing IVH with ventricular dilatation, showing the intraventricular hemorrhage with dilatation of the lateral ventricles and the third ventricle (thick arrows). d Brain magnetic resonance imaging in an asphyxiated newborn developing IVH and parenchymal hemorrhage, showing a large right intraventricular and parieto-occipital parenchymal hemorrhage (thick arrows) with some extension into the left ventricle. Possible infarcted zones in the bilateral watershed areas were noted (thin arrow)
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC4551518&req=5

Fig1: Brain magnetic resonance imaging in asphyxiated newborns treated with hypothermia who developed intraventricular hemorrhage, axial T2-weighted imaging (superior row) and coronal T2-weighted imaging (inferior row). a Brain magnetic resonance imaging in an asphyxiated newborn developing hemorrhage limited to the choroid plexus in the lateral ventricle (thick arrows). b Brain magnetic resonance imaging in an asphyxiated newborn developing an IVH without ventricular dilatation, showing the intraventricular hemorrhage in the lateral ventricles and the third ventricle (thick arrows) without dilatation of the ventricles. c Brain magnetic resonance imaging in an asphyxiated newborn developing IVH with ventricular dilatation, showing the intraventricular hemorrhage with dilatation of the lateral ventricles and the third ventricle (thick arrows). d Brain magnetic resonance imaging in an asphyxiated newborn developing IVH and parenchymal hemorrhage, showing a large right intraventricular and parieto-occipital parenchymal hemorrhage (thick arrows) with some extension into the left ventricle. Possible infarcted zones in the bilateral watershed areas were noted (thin arrow)

Mentions: One hundred and sixty term asphyxiated newborns met the criteria for therapeutic hypothermia. Fifteen of these newborns developed documented intraventricular hemorrhage, leading to an estimate of 9 % (95 % CI: 5.3-15.0 %) of intraventricular and/or intraparenchymal hemorrhage in this population of newborns. Among them, 53 % (8/15) developed a hemorrhage limited to the choroid plexus in the lateral ventricle or an IVH without ventricular dilatation; 47 % (7/15) had an IVH with ventricular dilatation or a parenchymal hemorrhage (Fig. 1). Three of these patients (20 % [3/15]) died from the complications of neonatal encephalopathy: two died before the hypothermia treatment was completed, and one died at one week of life.Fig. 1


Intraventricular hemorrhage in asphyxiated newborns treated with hypothermia: a look into incidence, timing and risk factors.

Al Yazidi G, Boudes E, Tan X, Saint-Martin C, Shevell M, Wintermark P - BMC Pediatr (2015)

Brain magnetic resonance imaging in asphyxiated newborns treated with hypothermia who developed intraventricular hemorrhage, axial T2-weighted imaging (superior row) and coronal T2-weighted imaging (inferior row). a Brain magnetic resonance imaging in an asphyxiated newborn developing hemorrhage limited to the choroid plexus in the lateral ventricle (thick arrows). b Brain magnetic resonance imaging in an asphyxiated newborn developing an IVH without ventricular dilatation, showing the intraventricular hemorrhage in the lateral ventricles and the third ventricle (thick arrows) without dilatation of the ventricles. c Brain magnetic resonance imaging in an asphyxiated newborn developing IVH with ventricular dilatation, showing the intraventricular hemorrhage with dilatation of the lateral ventricles and the third ventricle (thick arrows). d Brain magnetic resonance imaging in an asphyxiated newborn developing IVH and parenchymal hemorrhage, showing a large right intraventricular and parieto-occipital parenchymal hemorrhage (thick arrows) with some extension into the left ventricle. Possible infarcted zones in the bilateral watershed areas were noted (thin arrow)
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC4551518&req=5

Fig1: Brain magnetic resonance imaging in asphyxiated newborns treated with hypothermia who developed intraventricular hemorrhage, axial T2-weighted imaging (superior row) and coronal T2-weighted imaging (inferior row). a Brain magnetic resonance imaging in an asphyxiated newborn developing hemorrhage limited to the choroid plexus in the lateral ventricle (thick arrows). b Brain magnetic resonance imaging in an asphyxiated newborn developing an IVH without ventricular dilatation, showing the intraventricular hemorrhage in the lateral ventricles and the third ventricle (thick arrows) without dilatation of the ventricles. c Brain magnetic resonance imaging in an asphyxiated newborn developing IVH with ventricular dilatation, showing the intraventricular hemorrhage with dilatation of the lateral ventricles and the third ventricle (thick arrows). d Brain magnetic resonance imaging in an asphyxiated newborn developing IVH and parenchymal hemorrhage, showing a large right intraventricular and parieto-occipital parenchymal hemorrhage (thick arrows) with some extension into the left ventricle. Possible infarcted zones in the bilateral watershed areas were noted (thin arrow)
Mentions: One hundred and sixty term asphyxiated newborns met the criteria for therapeutic hypothermia. Fifteen of these newborns developed documented intraventricular hemorrhage, leading to an estimate of 9 % (95 % CI: 5.3-15.0 %) of intraventricular and/or intraparenchymal hemorrhage in this population of newborns. Among them, 53 % (8/15) developed a hemorrhage limited to the choroid plexus in the lateral ventricle or an IVH without ventricular dilatation; 47 % (7/15) had an IVH with ventricular dilatation or a parenchymal hemorrhage (Fig. 1). Three of these patients (20 % [3/15]) died from the complications of neonatal encephalopathy: two died before the hypothermia treatment was completed, and one died at one week of life.Fig. 1

Bottom Line: In addition, we compared their general characteristics with those not developing IVH.The asphyxiated newborns developing IVH also presented more frequently with persistent pulmonary hypertension, hypotension, thrombocytopenia and coagulopathy (p = 0.03).Efforts should be directed towards maintaining hemodynamic stability in these patients, even during the rewarming.

View Article: PubMed Central - PubMed

Affiliation: Division of Pediatric Neurology, Department of Pediatrics, Montreal Children's Hospital, McGill University, Montreal, Canada.

ABSTRACT

Background: Intraventricular hemorrhage (IVH) is uncommon in term newborns. Asphyxia and hypothermia have been mentioned separately as possible risk factors of IVH, since they might cause fluctuations of cerebral blood flow. The aim of this study was to assess the incidence, the timing, and the risk factors of intraventricular hemorrhage (IVH) in term asphyxiated newborns treated with hypothermia.

Methods: We conducted a prospective cohort study of all term asphyxiated newborns treated with hypothermia from August 2008 to June 2013. The presence or not of IVH was assessed using brain magnetic resonance imaging (MRI) performed after the hypothermia treatment was completed or using head ultrasound during the hypothermia treatment. For these newborns, to determine the timing of IVH, we retrospectively reviewed if they had other brain imaging studies performed during their neonatal hospitalization stay. In addition, we compared their general characteristics with those not developing IVH.

Results: One hundred and sixty asphyxiated newborns met the criteria for hypothermia. Fifteen of these newborns developed IVH, leading to an estimate of 9% (95% CI: 5.3-15.0%) of IVH in this population of newborns. Fifty-three percent had hemorrhage limited to the choroid plexus or IVH without ventricular dilatation; 47% had IVH with ventricular dilatation or parenchymal hemorrhage. Sixty-seven percent had an initial normal brain imaging; the diagnostic brain imaging that demonstrated the IVH was obtained either during cooling (in 30%), within 24 h of the rewarming (in 30%), or 24 h after the rewarming (in 40%). Recurrent seizures were the presenting symptom of IVH during the rewarming in 20% of the newborns. Coagulopathy was more frequent in the asphyxiated newborns developing IVH (p < 0.001). The asphyxiated newborns developing IVH also presented more frequently with persistent pulmonary hypertension, hypotension, thrombocytopenia and coagulopathy (p = 0.03).

Conclusions: The asphyxiated newborns treated with hypothermia appear to be at an increased risk of IVH, especially those with significant hemodynamic instability. IVH seems to develop during late hypothermia and rewarming. Efforts should be directed towards maintaining hemodynamic stability in these patients, even during the rewarming.

No MeSH data available.


Related in: MedlinePlus