Limits...
An Ingenious Super Light Trapping Surface Templated from Butterfly Wing Scales.

Han Z, Li B, Mu Z, Yang M, Niu S, Zhang J, Ren L - Nanoscale Res Lett (2015)

Bottom Line: Based on the super light trapping property of butterfly Trogonoptera brookiana wings, the SiO2 replica of this bionic functional surface was successfully synthesized using a simple and highly effective synthesis method combining a sol-gel process and subsequent selective etching.It could be concluded that the SiO2 negative replica inherited not only the original super light trapping architectures, but also the super light trapping characteristics of bio-template.This work may open up an avenue for the design and fabrication of super light trapping materials and encourage people to look for more super light trapping architectures in nature.

View Article: PubMed Central - PubMed

Affiliation: Key Laboratory of Bionic Engineering (Ministry of Education, China), Jilin University, Changchun, 130022, P. R. China, zwhan@jlu.edu.cn.

ABSTRACT
Based on the super light trapping property of butterfly Trogonoptera brookiana wings, the SiO2 replica of this bionic functional surface was successfully synthesized using a simple and highly effective synthesis method combining a sol-gel process and subsequent selective etching. Firstly, the reflectivity of butterfly wing scales was carefully examined. It was found that the whole reflectance spectroscopy of the butterfly wings showed a lower level (less than 10 %) in the visible spectrum. Thus, it was confirmed that the butterfly wings possessed a super light trapping effect. Afterwards, the morphologies and detailed architectures of the butterfly wing scales were carefully investigated using the ultra-depth three-dimensional (3D) microscope and field emission scanning electronic microscopy (FESEM). It was composed by the parallel ridges and quasi-honeycomb-like structure between them. Based on the biological properties and function above, an exact SiO2 negative replica was fabricated through a synthesis method combining a sol-gel process and subsequent selective etching. At last, the comparative analysis of morphology feature size and the reflectance spectroscopy between the SiO2 negative replica and the flat plate was conducted. It could be concluded that the SiO2 negative replica inherited not only the original super light trapping architectures, but also the super light trapping characteristics of bio-template. This work may open up an avenue for the design and fabrication of super light trapping materials and encourage people to look for more super light trapping architectures in nature.

No MeSH data available.


Related in: MedlinePlus

FESEM images and EDS spectrum of the SiO2 negative replica. a Lower magnification image. It could be found that the scales were still arranged in rows. However, they were no longer overlapped with each other. b Medium magnification image of the SiO2 negative replica. It can be observed that notches are lying in parallel, with humps of different shapes between them. c High-magnification images of the replica surface. The sizes and shapes of the humps were in conformity with those of the pores shown in Fig. 2c. d The EDS spectrum showed the main elements constituting the SiO2 negative replicas. e, f The scanning maps of silicon and oxygenium demonstrated the distribution of silicon and oxygenium, which was consistent with the structures shape of the subwavelength antireflective nanoditches arrays
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4549356&req=5

Fig4: FESEM images and EDS spectrum of the SiO2 negative replica. a Lower magnification image. It could be found that the scales were still arranged in rows. However, they were no longer overlapped with each other. b Medium magnification image of the SiO2 negative replica. It can be observed that notches are lying in parallel, with humps of different shapes between them. c High-magnification images of the replica surface. The sizes and shapes of the humps were in conformity with those of the pores shown in Fig. 2c. d The EDS spectrum showed the main elements constituting the SiO2 negative replicas. e, f The scanning maps of silicon and oxygenium demonstrated the distribution of silicon and oxygenium, which was consistent with the structures shape of the subwavelength antireflective nanoditches arrays

Mentions: The morphology of the SiO2 negative replica was investigated by FESEM, and the result is illustrated in Fig. 4a. Some scale-like structures were distributed on the surface of the replica, the shapes of which were similar to those of the black scales shown in Fig. 1b. From the aspect of the arrangement, the scaly structures of the replica also had good periodicity and arranged regularly from the front to the end of the replica in the same sequence just like tiles on the roof, which was also analogous with the bio-templates. The structural details of the SiO2 negative replica of the single scale were illustrated in Fig. 4b under medium magnification. It could be observed that notches were lying in parallel, with humps of different shapes between them. These notches were formed from the ridges on the scales of the black wings. The sol–gel precursor filled the space left between the ridges and became solidified, making the places that used to be ridges became notches, and the pores between ridges became humps between notches. Figure 4c is a high-magnification image of the negative replica of the black wing scales. The period of the negative replica nanostructures was about 1.5 μm. The size and shape of the humps were in conformity with those of the pores shown in Fig. 2c, which confirmed that these humps were the reverse structures of those pores. It was worth to mention that parallel nanostructures were obtained on both sides of the notches. These nanostructures were formed from fold stripes on both sides of the ridges mentioned when illustrating the morphology of black wing scales (Fig. 2d). In a word, after comparing Fig. 4 with Fig. 2 from a variety of angles, such as appearance, arrangement, size of scales, notches, and bumps, it was obvious that the original super light trapping architectures of bio-template were well inherited by the SiO2 negative replica. What is more, the appearance and comparison of the fold stripes on both sides of the ridges also draw the conclusion that the original architectures in bio-template were faithfully inherited by the SiO2 negative replica. To the best of our knowledge, this is the first time that a SiO2 negative replica of the original black butterfly Trogonoptera brookiana wing scales has been synthesized. However, the size of the negative replica was a bit different from the original scales. The element types and content analysis of the surface of the SiO2 negative replica were characterized with the help of an energy dispersive spectrometer (EDS). The EDS microanalyses (Fig. 4d) of the SiO2 replica indicated that the SiO2 replica was mainly composed of silicon and oxygenium. Peaks of silicon and oxygenium could be observed clearly, and the weight percentages of these two elements were 31.32 and 45.31 %, respectively. And the element enrichment regions of both silicon and oxygenium were consistent with the shape of the SiO2 negative replicas as the area scanning maps shown in Fig. 4e, f, which further indicated that highly purified SiO2 replicas were obtained.Fig. 4


An Ingenious Super Light Trapping Surface Templated from Butterfly Wing Scales.

Han Z, Li B, Mu Z, Yang M, Niu S, Zhang J, Ren L - Nanoscale Res Lett (2015)

FESEM images and EDS spectrum of the SiO2 negative replica. a Lower magnification image. It could be found that the scales were still arranged in rows. However, they were no longer overlapped with each other. b Medium magnification image of the SiO2 negative replica. It can be observed that notches are lying in parallel, with humps of different shapes between them. c High-magnification images of the replica surface. The sizes and shapes of the humps were in conformity with those of the pores shown in Fig. 2c. d The EDS spectrum showed the main elements constituting the SiO2 negative replicas. e, f The scanning maps of silicon and oxygenium demonstrated the distribution of silicon and oxygenium, which was consistent with the structures shape of the subwavelength antireflective nanoditches arrays
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4549356&req=5

Fig4: FESEM images and EDS spectrum of the SiO2 negative replica. a Lower magnification image. It could be found that the scales were still arranged in rows. However, they were no longer overlapped with each other. b Medium magnification image of the SiO2 negative replica. It can be observed that notches are lying in parallel, with humps of different shapes between them. c High-magnification images of the replica surface. The sizes and shapes of the humps were in conformity with those of the pores shown in Fig. 2c. d The EDS spectrum showed the main elements constituting the SiO2 negative replicas. e, f The scanning maps of silicon and oxygenium demonstrated the distribution of silicon and oxygenium, which was consistent with the structures shape of the subwavelength antireflective nanoditches arrays
Mentions: The morphology of the SiO2 negative replica was investigated by FESEM, and the result is illustrated in Fig. 4a. Some scale-like structures were distributed on the surface of the replica, the shapes of which were similar to those of the black scales shown in Fig. 1b. From the aspect of the arrangement, the scaly structures of the replica also had good periodicity and arranged regularly from the front to the end of the replica in the same sequence just like tiles on the roof, which was also analogous with the bio-templates. The structural details of the SiO2 negative replica of the single scale were illustrated in Fig. 4b under medium magnification. It could be observed that notches were lying in parallel, with humps of different shapes between them. These notches were formed from the ridges on the scales of the black wings. The sol–gel precursor filled the space left between the ridges and became solidified, making the places that used to be ridges became notches, and the pores between ridges became humps between notches. Figure 4c is a high-magnification image of the negative replica of the black wing scales. The period of the negative replica nanostructures was about 1.5 μm. The size and shape of the humps were in conformity with those of the pores shown in Fig. 2c, which confirmed that these humps were the reverse structures of those pores. It was worth to mention that parallel nanostructures were obtained on both sides of the notches. These nanostructures were formed from fold stripes on both sides of the ridges mentioned when illustrating the morphology of black wing scales (Fig. 2d). In a word, after comparing Fig. 4 with Fig. 2 from a variety of angles, such as appearance, arrangement, size of scales, notches, and bumps, it was obvious that the original super light trapping architectures of bio-template were well inherited by the SiO2 negative replica. What is more, the appearance and comparison of the fold stripes on both sides of the ridges also draw the conclusion that the original architectures in bio-template were faithfully inherited by the SiO2 negative replica. To the best of our knowledge, this is the first time that a SiO2 negative replica of the original black butterfly Trogonoptera brookiana wing scales has been synthesized. However, the size of the negative replica was a bit different from the original scales. The element types and content analysis of the surface of the SiO2 negative replica were characterized with the help of an energy dispersive spectrometer (EDS). The EDS microanalyses (Fig. 4d) of the SiO2 replica indicated that the SiO2 replica was mainly composed of silicon and oxygenium. Peaks of silicon and oxygenium could be observed clearly, and the weight percentages of these two elements were 31.32 and 45.31 %, respectively. And the element enrichment regions of both silicon and oxygenium were consistent with the shape of the SiO2 negative replicas as the area scanning maps shown in Fig. 4e, f, which further indicated that highly purified SiO2 replicas were obtained.Fig. 4

Bottom Line: Based on the super light trapping property of butterfly Trogonoptera brookiana wings, the SiO2 replica of this bionic functional surface was successfully synthesized using a simple and highly effective synthesis method combining a sol-gel process and subsequent selective etching.It could be concluded that the SiO2 negative replica inherited not only the original super light trapping architectures, but also the super light trapping characteristics of bio-template.This work may open up an avenue for the design and fabrication of super light trapping materials and encourage people to look for more super light trapping architectures in nature.

View Article: PubMed Central - PubMed

Affiliation: Key Laboratory of Bionic Engineering (Ministry of Education, China), Jilin University, Changchun, 130022, P. R. China, zwhan@jlu.edu.cn.

ABSTRACT
Based on the super light trapping property of butterfly Trogonoptera brookiana wings, the SiO2 replica of this bionic functional surface was successfully synthesized using a simple and highly effective synthesis method combining a sol-gel process and subsequent selective etching. Firstly, the reflectivity of butterfly wing scales was carefully examined. It was found that the whole reflectance spectroscopy of the butterfly wings showed a lower level (less than 10 %) in the visible spectrum. Thus, it was confirmed that the butterfly wings possessed a super light trapping effect. Afterwards, the morphologies and detailed architectures of the butterfly wing scales were carefully investigated using the ultra-depth three-dimensional (3D) microscope and field emission scanning electronic microscopy (FESEM). It was composed by the parallel ridges and quasi-honeycomb-like structure between them. Based on the biological properties and function above, an exact SiO2 negative replica was fabricated through a synthesis method combining a sol-gel process and subsequent selective etching. At last, the comparative analysis of morphology feature size and the reflectance spectroscopy between the SiO2 negative replica and the flat plate was conducted. It could be concluded that the SiO2 negative replica inherited not only the original super light trapping architectures, but also the super light trapping characteristics of bio-template. This work may open up an avenue for the design and fabrication of super light trapping materials and encourage people to look for more super light trapping architectures in nature.

No MeSH data available.


Related in: MedlinePlus