Limits...
Effects of direct current electric-field using ITO plate on breast cancer cell migration.

Kim MS, Lee MH, Kwon BJ, Seo HJ, Koo MA, You KE, Kim D, Park JC - Biomater Res (2014)

Bottom Line: When 1 V/cm of dc EF was applied, cells moved toward anode.The y forward migration index was -0.046 ± 0.357 under the 0 V/cm and was 0.273 ± 0.231 under direct-current electric field of 1 V/cm.In this study, we designed a new electrotaxis system using an ITO coated glass and observed the migration of MDA-MB-231 on direct current electric-field of the ITO glass.

View Article: PubMed Central - PubMed

Affiliation: Cellbiocontrol Laboratory, Department of Medical Engineering, Yonsei University College of Medicine, 134 Shinchon-dong, Seodaemun-gu, Seoul 120-752 Korea ; Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, 134 Shinchon-dong, Seodaemun-gu, Seoul 120-752 Korea.

ABSTRACT

Background: Cell migration is an essential activity of the cells in various biological phenomena. The evidence that electrotaxis plays important roles in many physiological phenomena is accumulating. In electrotaxis, cells move with a directional tendency toward the anode or cathode under direct-current electric fields. Indium tin oxide, commonly referred to as ITO has high luminous transmittance, high infrared reflectance, good electrical conductivity, excellent substrate adherence, hardness and chemical inertness and hence, have been widely and intensively studied for many years. Because of these properties of ITO films, the electrotaxis using ITO plate was evaluated.

Results: Under the 0 V/cm condition, MDA-MB-231 migrated randomly in all directions. When 1 V/cm of dc EF was applied, cells moved toward anode. The y forward migration index was -0.046 ± 0.357 under the 0 V/cm and was 0.273 ± 0.231 under direct-current electric field of 1 V/cm. However, the migration speed of breast cancer cell was not affected by direct-current electric field using ITO plate.

Conclusions: In this study, we designed a new electrotaxis system using an ITO coated glass and observed the migration of MDA-MB-231 on direct current electric-field of the ITO glass.

No MeSH data available.


Related in: MedlinePlus

The y forward migration index of MDA-MB-231. Schematic diagram of the y FMI (A), The y forward migration index of MDA-MB-231 in an EF of 0 V/cm and 1 V/cm (B) (*p < 0.05).
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC4549139&req=5

Fig5: The y forward migration index of MDA-MB-231. Schematic diagram of the y FMI (A), The y forward migration index of MDA-MB-231 in an EF of 0 V/cm and 1 V/cm (B) (*p < 0.05).

Mentions: To make the electrotaxis system more convenient than the established, we considered Indium-tin-oxide coated slide glass. To identify the function of ITO glass electrotaxis system, MDA-MB-231 were seeded on the ITO plate and electrotaxis was evaluated. We confirmed the electrotaxis of MDA-MB-231 on ITO plate under direct current electric fields of 0 and 1 V/cm. In the stimulation free condition, cells migrated randomly in all directions with a scattered distribution (Figure 4A). When 1 V/cm of direct-current electric field was applied, MDA-MB-231 moved toward the anode (Figure 4B). To characterize the latency in directional cell migration, we analyzed the y forward migration index (y FMI) (Figure 5A). The y FMI value of 1 indicates the cell has migrated perfectly toward the anode, −1 means the cell has migrated perfectly toward the cathode and 0 indicates the cell has migrated perpendicular to the stimulation direction. The y FMI was -0.046 ± 0.357 under the 0 V/cm and was 0.273 ± 0.231 under dcEFs of 1 V/cm (Figure 5B). However, there were no statistical differences between the migration speed of cells under 0 V/cm (36.99 ± 9.40 μm/hr) and 1 V/cm (37.62 ± 16.23 μm/hr) (Figure 6).Figure 5


Effects of direct current electric-field using ITO plate on breast cancer cell migration.

Kim MS, Lee MH, Kwon BJ, Seo HJ, Koo MA, You KE, Kim D, Park JC - Biomater Res (2014)

The y forward migration index of MDA-MB-231. Schematic diagram of the y FMI (A), The y forward migration index of MDA-MB-231 in an EF of 0 V/cm and 1 V/cm (B) (*p < 0.05).
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC4549139&req=5

Fig5: The y forward migration index of MDA-MB-231. Schematic diagram of the y FMI (A), The y forward migration index of MDA-MB-231 in an EF of 0 V/cm and 1 V/cm (B) (*p < 0.05).
Mentions: To make the electrotaxis system more convenient than the established, we considered Indium-tin-oxide coated slide glass. To identify the function of ITO glass electrotaxis system, MDA-MB-231 were seeded on the ITO plate and electrotaxis was evaluated. We confirmed the electrotaxis of MDA-MB-231 on ITO plate under direct current electric fields of 0 and 1 V/cm. In the stimulation free condition, cells migrated randomly in all directions with a scattered distribution (Figure 4A). When 1 V/cm of direct-current electric field was applied, MDA-MB-231 moved toward the anode (Figure 4B). To characterize the latency in directional cell migration, we analyzed the y forward migration index (y FMI) (Figure 5A). The y FMI value of 1 indicates the cell has migrated perfectly toward the anode, −1 means the cell has migrated perfectly toward the cathode and 0 indicates the cell has migrated perpendicular to the stimulation direction. The y FMI was -0.046 ± 0.357 under the 0 V/cm and was 0.273 ± 0.231 under dcEFs of 1 V/cm (Figure 5B). However, there were no statistical differences between the migration speed of cells under 0 V/cm (36.99 ± 9.40 μm/hr) and 1 V/cm (37.62 ± 16.23 μm/hr) (Figure 6).Figure 5

Bottom Line: When 1 V/cm of dc EF was applied, cells moved toward anode.The y forward migration index was -0.046 ± 0.357 under the 0 V/cm and was 0.273 ± 0.231 under direct-current electric field of 1 V/cm.In this study, we designed a new electrotaxis system using an ITO coated glass and observed the migration of MDA-MB-231 on direct current electric-field of the ITO glass.

View Article: PubMed Central - PubMed

Affiliation: Cellbiocontrol Laboratory, Department of Medical Engineering, Yonsei University College of Medicine, 134 Shinchon-dong, Seodaemun-gu, Seoul 120-752 Korea ; Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, 134 Shinchon-dong, Seodaemun-gu, Seoul 120-752 Korea.

ABSTRACT

Background: Cell migration is an essential activity of the cells in various biological phenomena. The evidence that electrotaxis plays important roles in many physiological phenomena is accumulating. In electrotaxis, cells move with a directional tendency toward the anode or cathode under direct-current electric fields. Indium tin oxide, commonly referred to as ITO has high luminous transmittance, high infrared reflectance, good electrical conductivity, excellent substrate adherence, hardness and chemical inertness and hence, have been widely and intensively studied for many years. Because of these properties of ITO films, the electrotaxis using ITO plate was evaluated.

Results: Under the 0 V/cm condition, MDA-MB-231 migrated randomly in all directions. When 1 V/cm of dc EF was applied, cells moved toward anode. The y forward migration index was -0.046 ± 0.357 under the 0 V/cm and was 0.273 ± 0.231 under direct-current electric field of 1 V/cm. However, the migration speed of breast cancer cell was not affected by direct-current electric field using ITO plate.

Conclusions: In this study, we designed a new electrotaxis system using an ITO coated glass and observed the migration of MDA-MB-231 on direct current electric-field of the ITO glass.

No MeSH data available.


Related in: MedlinePlus